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Abstract

Semi-Markov models play an important role in the analysis of time to event data. However, in
practice, data analysis for semi-Markov processes can be quite difficult and many simplifying
assumptions are made. Markovian multistate models are popular for event history analysis and
repeated events analysis for survival data. Semi-Markov processes provide a rich class of models
applicable to this area. Flowgraph models are multistate models that provide a data analytic
method for semi-Markov processes. Flowgraphs are useful for estimating Bayes predictive densi-
ties, predictive reliability functions, and predictive hazard functions for waiting times of interest
in the presence of censored and incomplete data. While multistate models have been used pri-
marily in medical research, flowgraph models have been used to model complex systems such
as cellular telephone networks, construction engineering projects, and manufacturing systems, in
addition to modeling disease progression for diseases such as cancer and AIDS, and for degener-
ative diseases such as diabetic retinopathy and kidney failure. I will present an introduction to
flowgraph models, discuss Bayesian inference based on flowgraph models, and the relationship to
multistate models and semi-Markov processes. Recent work with flowgraphs concerns posterior
sampling based on constructed likelihoods in the presence of incomplete data.

1 Background on Flowgraph Models

Flowgraph models are useful for modeling time to event data that result from a stochastic process. A
flowgraph is a graphical representation of a stochastic system that models potential outcomes, probabilities
of outcomes, and waiting times for those outcomes to occur. Figure 1 is a flowgraph model for a system in a
process plant. State 0 represents the functioning state. State 1 represents a noncritical failure. Noncritical
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Figure 1: Flowgraph model for system failure in a process plant.

failures are failures that can be repaired without system downtime. Transition from state 1 to state 0
represents repair, returning the system to a fully operational state. State 2 represents critical failure. Critical



failures are failures that cause system downtime. Such a model is useful for modelling a variety of systems
at the macro level for example, cellular telephone networks or emergency response networks.

While block diagrams and signal flowgraphs are widely used to represent engineering systems, they
do not incorporate probabilities, waiting times, or data analysis. The literature on flowgraph methods in
engineering is vast beginning with Mason (1953). Introductions to flowgraph methods are contained in most
circuit analysis or control systems textbooks such as D’Azzo and Houpis (1981), Gajic and Lelic (1996) and
Whitehouse (1977). Statistical flowgraph models are based on flowgraph ideas but unlike their antecedents,
flowgraph models can also be used to model and analyze data from complex stochastic systems. Early
work on statistical flowgraph models focused on applications to survival analysis and includes Butler and
Huzurbazar (1997) and Huzurbazar (1999). Yau and Huzurbazar (2002) present flowgraph methods for a
detailed application to diabetic retinopathy. Huzurbazar (2004) presents a review of flowgraph models for use
in survival analysis. Huzurbazar (2000a and b) provide applications to engineering systems. In particular,
Huzurbazar (2000a) gives details on using flowgraph models for computing the total and partial system
failure for cellular telephone networks. The article also deals with data analysis for general queueing systems
using flowgraph models and considers M/M/q queues as a special case, although the methods presented are
for general semi-Markov processes, including M/G/1 queues. Flowgraphs are also distinct from graphical
models in that the states represent outcomes rather than variables. For example, while feedback loops are
an integral part of flowgraph models, they are redundant in a graphical model.

In a flowgraph model, the states, representing outcomes, are connected by directed line segments called
branches. These branches are labeled with transmittances. These transmittances are labelled with the
“transition probability x moment generating function (MGF) the of waiting time distribution in the previous
state” which is a quantity called the branch transmittance. In the figure, probabilities and moment generating
functions of the waiting time distributions are shown as branch transmittances. The waiting times on the
branches can be any parametric distributions that admit moment generating functions. Hence, the model is
quite general in that exponential assumptions or assumptions that the waiting for the various branches be
from the same family of distributions (for tractability) are not made. For example, in Figure 1, the branch
waiting time for state 0 to state 1 could be inverse Gaussian, the branch waiting time for state 0 to state 2
could be gamma, and the branch waiting for state 1 to state 2 could be Weibull.

We use the branch transmittances of a flowgraph model along with flowgraph algebra to solve for the MGF
of the distribution of the waiting time of interest. This MGF is converted to a density, reliability, or hazard
function using a saddlepoint approximation (cf. Daniels (1954)). The end result from a flowgraph model is
a Bayesian predictive distribution of the quantity of interest. Quantities of interest include predicting the
distribution of the total time to critical failure, 0 — 2; predicting the waiting time to repair, say, 1 — 0;
predicting the time to noncritical failure 0 — 1; or predicting the total number of times the system reaches
noncritical failure and is repaired, i.e. the total number of times the transition 1 — 0 is made.

Flowgraphs models can be viewed as a type of semi-Markov multistate model. Multistate models are
used in survival analysis to describe longitudinal, time to event data. Hougaard (1999) provides a review.
They model stochastic processes that progress through various stages. In terms of data analysis, multistate
models have been restricted to the realm of Markov models. In a Markov multistate model, given the current
state of the process, the transition time to a future state does not depend on the past history of the process.
At the initial state of a Markov process, the transition time is a minimum of the waiting time distributions
corresponding to all possible transitions from the initial state. Hence, in practice, for tractability and
analytical convenience, exponential distributions are assumed. Occasionally, with appropriate parametric
restrictions, Weibull distributions are used (cf. Wilson and Soloman (1994)), exploiting the fact that the
minimum of independent and identically distributed Weibulls is again a Weibull distribution.

A semi-Markov multistate model allows the transition time to a future state to depend on the duration
of time spent in the current state. In practice, it is quite difficult to analyze data for semi-Markov multistate
models. One method of analysis for multistate models consists of combining independent submodels for
each transition intensity, a method that restricts the analysis to models with unidirectional or progressive
flow (cf. Andersen and Keiding (2002)). In fact, Hougaard (1999) states that for non-unidirectional or



non-progressive multistate models, it is impossible to obtain general formulas for transition probabilities for
models where the hazard is allowed to depend on the history in any way. Flowgraphs work in the MGF
domain and circumvent this difficulty.

Another method is the use of the popular proportional hazards model. The proportional hazards model as
used in medical statistics was developed by Cox (1972); however, the idea of assuming proportional hazards
to fit more parsimonious models dates back to the operations research literature (cf. Allen (1963)). Cox’s
model is semi-parametric and assumes that the intensity of the counting process is a product of a parametric
function of the covariates and an arbitrary function of time, hence its designation as “proportional hazards”.
This method is also restricted to a unidirectional or progressive multistate model. The obvious restriction
of the proportional hazards model is that hazards are not always proportional. In both methods, the key
approach for analyzing such multistate models is based on modeling the hazard function, a quantity that is
not directly observable. The end result is a hazard function model based on a set of covariates which can
be converted to a survival function if required. There are many extensions of this model and further details
can be found in survival analysis texts such as Klein and Moeschberger (1997) and Therneau and Grambsch
(2000).

The flowgraph methodology allows for a variety of distributions to be used within the stages of the
multistate model and also easily handles reversibility. In a medical context, this means that in a progressive
disease, a patient is allowed to improve at times. In the engineering context, this means that a failed
component can be repaired. Flowgraphs model the observable waiting times rather than the hazards and
as such, they do not directly make any assumptions about the shape of the hazard. The end result from
a flowgraph analysis are Bayes predictive densities, CDFs, survivor or reliability functions, and hazard
functions of the waiting times of interest. If one prefers, maximum likelihood estimation is also available.
Flowgraphs also handle censored and incomplete data.

Complete data on a flowgraph model consists of having every intermediate transition for each observation.
The associated waiting time for the transitions may be censored, however, the transition information is
complete. In Figure 1, complete data consists of observations such as0 —+1 —+ 0 — 1 — 2 or 0 — 2 where
we know that the system trasited directly to a critical failure.

Incomplete data consists of data that have complete information on observed waiting times but incomplete
information on the associated transitions. For example, in Figure 1, if we observe a waiting time such as
0 — 2 but know that the system experienced a noncritical failure before a critical failure, we expect that the
transition is 0 — 1 — 2 but that the transition 1 is incomplete. This leads to another type of data called
unrecognizably incomplete data. Unrecognizably incomplete data are data that appear to have complete
information on the transitions and waiting times but in reality are incomplete with respect to transition
information. For example, suppose that we observe 0 — 1 — 2, we might assume that the data are
complete. But perhaps the true observation transitions were 0 — 1 — 0 — 1 — 2 with the first 1 and second
0 missing.

Current research on flowgraph models is concerned with various strategies for posterior simulation basedon
constructed likelihoods. This talk will present an introduction to multistate models and flowgraph models in
the context of semi-Markov processes. The focus will be on data analysis for such processes in the presence
of censored and incomplete data. Time permitting, methods for uncrecognizably incomplete data will also
be presented.
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