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Abstract

We present a modeling framework for allocating development or support effort among software
components to meet a specified cost or reliability objective. The approach is based on knowledge
of the linkage between the operational profile and the architecture of the system, but allows
for uncertainty through the use of probability distributions to characterize usage. Stochastic
optimization methods are presented to obtain efficient solutions to the allocation problem.

1 Introduction

Guidelines for achieving a specified reliability target under resource constraints play a key role in the software
development planning process. In particular, methods that determine how to allocate resources among
components of a software system to facilitate cost–efficient progress toward a quantified system reliability
goal are essential. Here, a component is defined as a set of operations, a subsystem, a module, an object, or
any other distinguishable software entity that can be assigned a failure intensity representing its reliability.
If the intended usage of the system is given, then system reliability can be computed as a function of
component failure intensities, the expected component utilizations, and the specified usage. Specification
of usage through the assignment of occurrence probabilities to operations form the quantification known as
the operational profile. (See Musa, 1993). However for many systems, in particular commercial software
systems, the usage of the system in a production setting may vary considerably from an expected usage,
or the usage of the system during the test phases of system development. This paper describes a modeling
framework for cost and reliability planning in software system development that allows for random variation
in the operational profile.

Previous authors have addressed the problem of software reliability allocation in the context of a specified
operational profile. For instance, Poore, Mills and Mutchler (1993) used a spreadsheet approach to consider
various strategies for allocating reliability to software modules. The paper of Helander, Zhang, and Ohlsson
(1998) provides an analytical solution to the optimal allocation problem based on standard nonlinear op-
timization methods. A component utilization matrix is used to link system structure to operations, which
are partitionings of the software system from a user’s perspective. We build directly on the framework of
Helander et al. (1998), by allowing for uncertainty in the operational profile through the use of probability
distributions on the operation occurrences. This is especially important as the high-level componentization
of software systems becomes more common. By high-level, we mean that what were once considered as
individual products are now bundled together in different ways and sold as software systems. An example is
the componentization of IBM software offerings, which bundles key elements of products such as DB2, Tivoli,
and Websphere Application Server together so that they are quickly deployable in a customized setting. The
usage of the components may vary widely from setting to setting, but reliability targets for the individual
components need to be allocated so that overall reliability targets are achieved across a range of settings.

In Section 2, we provide the general model formulation for specification of component failure intensities
to plan for a software system reliability target while minimizing costs. Section 3 gives the derivation of
the stochastic optimization problem under a particular distributional assumption about usage. Section 4
presents an example.



2 Mathematical Formulation as an Optimal Planning Problem

Let n denote the number of software components. In assembling components to form a software offering, we
want the components to be reliable enough so that the probability of failure-free execution for a configured
system has probability of at least ρ (0 < ρ < 1) of achieving failure–free execution with respect to an
execution time interval of length τ . The problem of interest is to determine what the failure intensities of
the individual components should be to achieve this target in the most cost effective manner. This assumes a
cost associated with achieving a failure intensity value, a common concept in software engineering economics.

Denote f(λ1, λ2, . . . , λn) as the total cost of achieving the failure intensities λ1, λ2, . . . , λn, which we
assume to be a pseudoconvex, non–increasing function of the λj ’s. The function R(λ1, λ2, . . . , λn; τ) measures
system reliability in terms of λ1, λ2, . . . , λn, which will be used as the main decision variables in the reliability
allocation cost–optimization problem. The following model simultaneously finds λ1, λ2, . . . , λn:

Minimize f(λ1, λ2, . . . , λn) (1)

Subject to: R(λ1, λ2, . . . , λn; τ) = exp

⎧⎨
⎩−

n∑
j=1

m∑
i=1

piµijλjτ

⎫⎬
⎭ ≥ ρ (2)

λj ≥ 0 for j = 1, . . . , n (3)

where 0 < pi < 1,
∑m

i=1 pi = 1, are the operational profile parameters and µij (0 ≤ µij ≤ 1) are the
component usage parameters for i = 1, . . . ,m operations and j = 1, . . . , n components with

∑n
j=1 uij = 1

for each i. Note that the reliability function in (2) is derived under the assumption that failure events are
statistically independent and the system architecture is such that a failure in one component causes failure
of the entire system, i.e. the system is not fault-tolerant with respect to the components as identified in the
planning model. Other forms for R(·) could be derived under different assumptions concerning the system
architecture.

This model specified by (1), (2), and (3) is the multivariate, nonlinear, constrained optimization model
introduced in Helander et al. (1998). It can be equivalently restated as:

Minimize f(λ1, λ2, . . . , λn) (4)

Subject to: g0(λ1, λ2, . . . , λn) = ρ ln(ρ) + ρτ

m∑
i=1

pi

n∑
j=1

µijλj ≤ 0 (5)

gj(λ1, λ2, . . . , λn) = −λj ≤ 0 for j = 1, . . . , n (6)

which follows a standard nonlinear programming model form involving minimization of a nonlinear objective
function constrained by “≤ 0” inequalities. Conditions and solutions for this form are given in Helander et
al. (1998) for some common cost functions in software economics (see, e.g., Boehm, 1981).

In this framework, uncertainty in the operational profile can be introduced by treating the operational
profile parameters as random variables, giving a stochastic programming formulation. This formulation and
general solutions are discussed in the next section.

3 Stochastic Optimal Reliability Allocation

Let ξ̃ = {ξi, . . . , ξm} denote the random vector representing random variables replacements for the determin-
istic operational profile parameters in constraint (5), pi, i = 1, . . . ,m. The decision model stated by (4), (5)
and (6) in the context of a random operation profile leads to a problem statement

“Minimize” f(λ1, λ2, . . . , λn; ξ̃) (7)



Subject to: G0(λ1, λ2, . . . , λn; ξ̃) = ρ ln(ρ) + ρτ

m∑
i=1

ξi

n∑
j=1

µijλj ≤ 0 (8)

gj(λ1, λ2, . . . , λn) = −λj ≤ 0 for j = 1, . . . , n (9)

In this formulation, we have replaced g0 by G0 to indicate that g0 is now a random variable. As noted in
Kall and Wallace (1994), this problem as a whole, and the constraint (8), are not well defined when trying
to make a decision for setting the λ1, λ2, . . . , λn values, prior to knowing a realization of ξ̃. To address this,
we need a deterministic equivalent of the model specified by (7), (8) and (9). One alternative is to solve a
problem such as

P [G0(λ1, λ2, . . . , λn; ξ̃) ≤ 0] ≥ p, (10)

where 0 < p < 1 represents the chance that the overall reliability target is met.
Note that when a realization of ξ̃ is specified, e.g., as p1, . . . , pm, then the values of pi should sum to one,

and each value must be between zero and one. A convenient probability distribution that achieves these
properties is a Dirichlet distribution. A random variable ξ̃ is said to follow a Dirichlet distribution if its
probability distribution function has the form

p(ξ̃) = Dirichlet(ξ̃; u) =
1

Z(u)

m∏
i=1

ξui−1
i , (11)

when ξ1, . . . , ξm ≥ 0,
∑m

i=1 ξi = 1 and u1, . . . , um > 0. The normalization constant is

Z(u) =
∏m

i=1 Γ(ui)
Γ(

∑m
i=1 ui)

. (12)

A univariate Dirichlet distribution reduces to a standard Beta distribution. The values u = (u1, . . . , um)
determine the shape of the distribution. See Kotz, Balakrishnan, and Johnson (2000) for additional details
on Dirichlet distributions.

Standard results in stochastic optimization, for example Kall and Wallace (1994), show that a solution
involving ( 10) is obtained by applying the same non–linear programming techniques used to solve the deter-
ministic formulations. For example, when (10) is quasiconvex and differentiable with respect to λ1, λ2, . . . , λn,
then the Kuhn-Tucker conditions may be used to characterize and identify an optimal solution. Application
of such techniques, including validation of properties such as quasiconvexity for (10), requires derivation of
the distribution of G0. The next subsection explores this derivation.

3.1 Derivation of the Distribution for G0

Upon examination of expression (10), we see that G0 is basically a shifted and scaled linear combination
of Dirichlet random variables. Recent results by Provost and Cheong (2000) provide an expression for the
cumulative distribution function of a linear combination of Dirichlet random variables in integral form.
Letting a = ρ log(ρ), b = ρτ and ci =

∑n
j=1 µijλj in (8), the distribution function is given by

FG0(z) =
1
2
− 1

π

∫ ∞

0

sin[12
∑m

i=1 2ui tan−1{(ci − (z−a)
b )u}]

u
∏m

i=1{1 + (ci − (z−a)
b )2u2}(2ui)/4

du, (13)

for a + b min(ci) < z < a + b max(ci).
As stated above, the Kuhn-Tucker sufficient conditions can be used to find the solution to the stochastic

optimization problem provided (10) is quasiconvex and differentiable with respect to the λi. For other cases,
numerical approaches will be explored. Properties based on the assumption of the distribution function (13)
will be reported in the full version of the paper, along with numerical results for a number of examples.



Figure 1: Solution for a deterministic version of the model specified by (1), (2), and (3)

Figure 2: Solution under different parameterizations of ξi

4 Example

In this section, we graphically illustrate the effect of uncertainty on the allocation problem by extending
the n = 2 component example from Helander et al. (1998). Figure 1 shows the solution for a deterministic
version of the model specified by (1), (2), and (3). If we consider uncertainty in the usage profile by assuming
the pi’s follow a Dirichlet distribution with a common shape parameter u, the effect is observed by the shifting
of the main reliability constraint. This is illustrated graphically in Figure 2 for u = 0.5, 1, 2, 16.
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