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Abstract

For the centered jump Lévy processes we study the small ball probabilities. Namely, for the
process Xρ that is a centered pure jump Lévy process and that comes close to the Wiener process,
when the intensity of jumps ρ tends to∞, we are interested in the probability P{supt∈[0,1] |Xρ(t)−
f(t)| ≤ r} under r → 0 for the admissible shift functions f . For this probability we obtained the
asymptotic estimate that coincides with the known Wiener-type estimate, when the intensity ρ
increases “fast”. This asymptotic estimate is different, when the intensity changes “slower”.
We discuss also various applications of such type estimates, for example, to the proof of the
functional Strassen law of the iterated logarithm for the empirical processes, to the estimation
of the quantization error in the approximation theory, the coding theory and to the theory of
reliability.

1 Statement of the problem

Let (B[0, 1], ‖ · ‖) be the space of bounded functions on [0, 1] endowed with the uniform norm and let U be
the unit ball in this space. Let us consider the space of admissible shifts of the Wiener measure on [0,1]. It
is a Hilbert space (E, | · |E) defined as

E := {f ∈ B[0, 1] : f(0) = 0, f ∈ AC[0, 1], |f |E < ∞},

where AC[0, 1] denotes the space of absolutely continuous functions on [0, 1] and | · |E is a Hilbert norm

|f |2E :=
∫ 1

0

f ′(t)2 dt.

Let us introduce a jump Lévy process ξ associated to the measure of jumps P, where P is a Poisson random
measure on the space R+ ×R \ {0} defined by a Lévy measure dt× Λ(d`), i.e.,

ξ(t) =
∫ t

0

∫

L
`P(dt, d`). (1)

We assume that the deterministic measure Λ(d`) is concentrated on a bounded subset L ⊂ R \ {0}. The
expectation and the variance of the process ξ are determined by the expressions

Eξ(t) = t

∫

L
` Λ(d`), Dξ(t) = t

∫

L
`2 Λ(d`).

We assume that Eξ(1) is finite and denote σ2 := Dξ(1).
Now by using the process ξ we construct the centered normalized process of intensity ρ > 0 as follows

Xρ(t) := ρ−1/2(ξ(ρt)− ρEξ(t)), t ∈ [0, 1].



For the process Xρ the invariance principle holds, i.e., Xρ
d⇒σ W, when ρ →∞.

In this work we investigate the limit behavior of the shifted small ball probabilities of the process Xρ,
i.e., we study

P{Xρ − λf ∈ rU} under ρ →∞, λ →∞, r → 0.

We consider only admissible shift functions f . The space of admissible shifts of Xρ is known to be a subset
of E, the space of admissible shifts of the Wiener measure.

The previous result in this direction:
K.L.Chung (1964), unshifted small ball probability (f ≡ 0) for the Wiener process W

P{W ∈ rU} = exp
{
− π2

8r2
(1 + o(1))

}
, when r → 0.

K.Grill (1991), shifted small ball probability for W

P{W − λf ∈ rU} = exp
{
−λ2

2
|f |2E −

π2

8r2
(1 + o(1)) + R

}
, when λ →∞, r → 0, (2)

where the term R = R(r, λ, f) = o(λ2) can be bigger than r−2 under some relations between r and λ
For the theory of the small ball probabilities of the gaussian processes see Li, Shao (2002).
A.A.Mogulskii (1974), unshifted small ball probability for Xρ

P{Xρ ∈ rU} = exp
{
−π2σ2

8r2
(1 + o(1))

}
, when ρr2 →∞, r → 0.

The results presented below generalizes the Mogulskii formula.
Since the invariance principle holds, it is natural to expect that the behavior of the small ball probabilities

for the process Xρ is similar to the behavior of this probability for the Wiener process. However, Theorem
1 below shows that it is not always true.

2 Result

The proof of Theorem 1 is based on the properties of the pure jump Lévy processes. We did not use the
invariance principle, i.e., KMT inequality (Komlós, Major, Tusnády (1975)), that would lead the proof (under
the strong restriction ρ1/2rλ−2 → ∞) to the formula (2) for the Wiener process. We use a new approach
based on the Skorokhod formula for the Poisson measures (Skorokhod (1964)).

Theorem 1 Let f ∈ E such that Varf ′ < ∞. If three conditions hold

1. λ →∞, ρ →∞, r/λ → 0;

2. ρ r2 →∞;

3. ρ/λ2 →∞
and δ ∈ [0, 1) is arbitrary, then the following estimates are true

P{Xρ − λf ∈ rU} ≤ exp
{
− λ2

2σ2
|f |2E −

π2σ2

8r2
(1 + o(1))+

λr

σ2
(f ′(1) + Varf ′)(1 + o(1))+

1
6σ6

∫

L
`3Λ(d`) · λ3

ρ1/2

(∫ 1

0

f ′3(t) dt + o(1)
)}

,

P{Xρ − λf ∈ rU} ≥ exp
{
− λ2

2σ2
|f |2E −

π2σ2

8r2(1− δ)2
(1 + o(1)) + (2δ − 1)

λr

σ2
(f ′(1) + Varf ′)(1 + o(1))

+
1

6σ6

∫

L
`3Λ(d`) · λ3

ρ1/2

(∫ 1

0

f ′3(t) dt + o(1)
)}

.



Comments:
1. The third term of the estimate obtained in the theorem is the same that the term R in the Grill formula
(2). The last term λ3ρ−1/2

∫
L

∫ 1

0
f ′3(t) `3Λ(d`)dt is new. It appears because we consider jump (Poisson)

processes. Note, the asymptotics for Xρ are different from the Wiener-type asymptotics (2), when the new
term is bigger than the second and third terms, i.e., when ρ ¿ λ6 r4 and ρ ¿ λ4 r−2. So, if we assume

ρ = λp, p > 2, r = λ−z, z > −1,

then we illustrate the result of the theorem as follows:

Figure 1: The domain of the generic asymptotics for the jump (Poisson) processes.

This effect is the sequence of that the process Xρ becomes sufficiently different from W, when the intensity
ρ increases slowly.
2. Notice, if we consider the result of the theorem for a jump Lévy process with a symmetrical jump measure
Λ, for example, Λ = δ−m

⋃
δm, m ∈ R+, then the generic “Poisson” term of the estimate disappears. Hence,

we infer that non-symmetry of the sample paths of the centered process Xρ is the reason of the difference
from the Wiener case.

3 Applications

1. The rates of convergence in the functional Strassen law of the iterated logarithm are related to
shifted small ball probabilities. Making use of Theorem 1 we obtained the rates in the analogue of
the Strassen law (see Mason (1986), Berthet(1996), Deheuvels(2000)) for the tail empirical process α∗n
(α∗n(t) = n1/2h

−1/2
n αn(hnt), t ∈ [0, 1], where αn is the standard empirical process, hn ↓ 0, n →∞), i.e., we

found ` and C in the expression

lim inf
n→∞

(log log n)` ‖α∗n(·)/(2 log log n)1/2 − f(·)‖ = C.

This result can be illustrated by the figure 2. See for details Shmileva (2004).
2. Let P be the distribution of Xρ on E and N be a positive integer. It is interesting to find an optimal
approximation of P by a probability measure which is supported by N points e1, ...eN ∈ E. The quantization
error in this case is the following:

δ(ρ,N, q) := inf{E min
i=1..N

‖Xρ − ei‖q|e1, ...eN ∈ E}



Figure 2: ` : (log log n)−` —the rate of convergence, p : hn = n−1(log log n)p/2 — the sequence, which
define the process α∗n. The rate of convergence is the same as for W, when hn decreases “slow”. When hn

changes “faster”, the rate is bigger or smaller in dependence of the sign of
∫ 1

0
f ′3.

If we consider N independent random elements Y1, ...YN with the distribution P , then it is reasonable to
consider the following value

∆(ρ,N, q) := (EE{ min
i=1..N

‖Xρ − Yi‖q|Y1, Y2 . . . YN})1/q.

It is closely connected to shifted small ball probabilities

∆(ρ,N, q)q =
∫ ∞

0

∫

E

(1−P{Xρ − x ∈ ε1/q U})NP (dx) dε.

For the result see Dereich, Lifshits (2004). For the others applications of small ball probabilities see Li, Shao
(2002).
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