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Abstract

In this talk I will introduce the basic properties of Bayesian network models, and discuss why
BN models are well suited for applications in reliability.

1 Basic properties

A Bayesian Network (BN), (Pearl 1988; Cowell et al. 1999; Jensen 2001), is a compact representation of a
multivariate statistical distribution function. A BN encodes the probability density function governing a set
of random variables {X1,..., X, } by specifying a set of conditional independence statements together with
a set of conditional probability functions. More specifically, a BN consists of a qualitative part, a directed
acyclic graph where the nodes mirror the random variables X;, and a quantitative part, the set of conditional
probability functions. An example of a BN over the variables {X,..., X5} is shown in Figure 1, only the
qualitative part is given. We call the nodes with outgoing edges pointing into a specific node the parents of
that node, and say that X is a descendant of X; if and only if there exists a directed path from X; to X; in
the graph. In Figure 1 X; and X5 are the parents of X3, written pa (X3) = {X;, X2} for short. Furthermore,
pa (X4) = {X3} and since there are no directed path from X, to any of the other nodes, the descendants of
X, are given by the empty set and, accordingly, its non-descendants are {X;, X2, X3, X5}

The edges of the graph represents the assertion that a variable is conditionally independent of its non-
descendants in the graph given its parents in the same graph; other conditional independence statements
can be read off the graph by using the rules of d-separation (Pearl 1988). The graph in Figure 1 does for
instance assert that for all distributions compatible with it, we have that X, is conditionally independent of
{X1, X2, X5} when conditioned on {X3}.

Figure 1: An example BN over the nodes {X7,..., X5}. Only the qualitative part of the BN is shown.

When it comes to the quantitative part, each variable is described by the conditional probability func-
tion of that variable given the parents in the graph, i.e., the collection of conditional probability functions
{f(x;|pa(z;))}, is required. The underlying assumptions of conditional independence encoded in the
graph allow us to calculate the joint probability function as

@1, ... an) = Hf(xi | pa (). (1)



Some of the main reasons why Bayesian networks have become widely used are (in the view of the author):

Efficient calculation scheme: Efficient algorithms for calculating arbitrary marginal distributions, say,
f(xi,z;,x1) as well as conditional distributions, say, f(x;,x; | zk,z¢), make BNs well suited for mod-
eling complex systems. Models over thousands of variables are not uncommon.

Intuitive representation: The qualitative part (the graph) has an intuitive interpretation as a model of
causal influence. Although this interpretation is not necessarily entirely correct, it is helpful when the
BN structure is to be elicited from experts. Furthermore, it can also be defended if some additional
assumptions are made (Pearl 2000). To elicit the quantitative part from experts, one must acquire
all conditional independencies (f(z;|pa(z;)) for i=1,...,n in Eq. 1), and once again the causal
interpretation can come in as a handy tool. Alternatively, the expert can supply a mix of both marginal
and conditional distributions, which can then be glued together by the IPFP algorithm (Whittaker
1990; Vomlel 1999).

Model fitting: Methods for estimating the quantitative part of the BN from data date back to the work of
Spiegelhalter and Lauritzen (1990), see also Lauritzen (1995). A method for estimating the qualitative
part from data was pioneered by Cooper and Herskovits (1992), and is still an active research area.

Compact representation: Through its factorized representation (Eq. 1), the BN attempts to represent
the multi-dimensional distribution in a cost-efficient manner. The parametrization is however not op-
timized; it is merely defined to be sufficient to encode any distribution compatible with the conditional
independence statements encoded in the graph. Many researchers, including Heckerman and Breese
(1994) and Boutilier et al. (1996), have explored even more cost-efficient representations.

Expressive representation: A BN can represent or approximate any probability density function. The
BN representation has traditionally been limited to only handle discrete distributions in addition to a
particular class of hybrid distributions, the so-called conditional Gaussian distributions (Lauritzen and
Wermuth 1989). Recently, Moral et al. (2001) have developed a framework for approximating any hy-
brid distribution arbitrarily well by employing miztures of truncated exponential (MTE) distributions.
They also show how the BN framework’s efficient calculation scheme can be extended to handle the
MTE distributions.

2 Bayesian Networks in reliability

The history of BNs in reliability can (at least) be traced back to Barlow (1988). More recently, BNs have
found applications in, e.g., software reliability (Fenton et al. 1998; Gran 2002), fault finding systems (Jensen
et al. 2001), maintenance modeling (Langseth and Lindqvist 2003), and general reliability modeling (Bobbio
et al. 2001; Langseth 2002; Ingleby and West 2003).
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