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Abstract

Suppose an individual is exposed to two dependent competing risks. Here we review some tests based
on time to failure and cause of failure for testing hypotheses for equality of sub-distribution (sub-survival
) functions and cause specific hazard rates.

1 Introduction

The competing risks situation arises in life studies when a unit is subject to many, say k, modes of failure and
the actual failure can be ascribed to a unique mode. Suppose that the continuous positive valued random
variable T represents the lifetime of the unit and δ taking values 1, 2, . . . , k represent the risk which caused
the failure of the unit.

The joint probability distribution of (T, δ) is specified by the set of k sub-distribution functions F (i, t) =
P [T ≤ t, δ = i], or equivalently by the subsurvival functions S(i, t) = P [T > t, δ = i], i = 1, 2, . . . , k. LetH(t)
and S(t) denote , respectively the distribution function and the survivor function of T . Let f(i, t) denote
the sub-density function corresponding to ith risk. Then the density function of T is h(t) =

∑k
i=1 f(i, t)

and pi = F (i,∞) is the probability of failure due to the ith risk. Let cause specific hazard rate be given by
λ(i, t) = f(i,t)

S(t) .
A commonly used description of the competing risks situation is the latent failure time model. Let

X1, X2, . . . , Xk be the latent failure times of any unit exposed to k risks, where Xi represents the time to
failure if cause i were the only cause of failure present in the situation. Fi denotes the marginal distribution
of Xi. The observable random variables are still the time to failure T , and the cause of failure δ where
δ = j if Xj = min(X1, X2, . . . , Xk). If X1, X2, . . . , Xk are independent then the marginal and hence the
joint distribution is identifiable from the probability distribution of the observable random variables (T, δ).
However, in general when the risks are not independent, neither the joint distribution of X ′s nor their
marginals are identifiable from the probability distribution of (T, δ) ( Crowder (2001)). The independence
or otherwise of the latent lifetimes (X1, X2, . . . , Xk) cannot be statistically tested from any data collected
on (T, δ). Also, the marginal distribution functions Fi(x) may not represent the probability distribution of
lifetimes in any practical situation. Elimination of jth risk may change the environment in such a way that
Fi(x) does not represent the lifetime of Xi in the changed scenario.

In view of the above considerations, unless one can assume independence, it is necessary to suggest
appropriate models, develop methodology and carry out the data analysis in terms of the observable ran-
dom variables (T, δ) alone. For recent work on these lines see Deshpande (1990), Aras and Deshpande
(1992),Aly, Kochar and McKeague (1994), Sun and Tiwari (1995), Deshpande and Dewan ( 2000) , Crowder
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(2001),Kalbfleisch and Prentice (2002), Dewan and Kulathinal (2003), and Dewan, Deshpande and Kulathi-
nal (2004),

2 Locally Most Powerful Rank Tests

Suppose k = 2, that is , a unit is exposed to two risks of failure denoted by 1 and 0. When n units
are put to trial , the data consists of (Ti, δ

∗
i), i = 1, . . . , n where δ∗ = 2 − δ. Suppose we wish to test

the hypothesis H0 : F (1, t) = F (2, t), for all t. Let T = (T1, . . . , Tn), δ∗ = (δ1, . . . , δn). Let f(1, t) =
f(t, θ), f(2, t) = h(t)− f(t, θ) where h(t) and f(t, θ) are known density functions and incidence density such
that f(t, θ0) = 1

2h(t). Let T(1) ≤ T(2) ≤ . . . ≤ T(n) denote the ordered failure times. Let

Wi =
{

1 if T(i) corresponds to first risk
0 otherwise. (1)

Let Rj be the rank of Tj among T1, . . . , Tn .

Theorem 2.1 If f ′(t, θ) is the derivative of f(t, θ) with respect to θ, then the locally most powerful rank test
for H0 : θ = θ0 against H1 : θ > θ0 is given by: reject H0 for large values of Lc =

∑n
i=1 wiai, where

ai =
∫
. . .

∫
0<t1<...<tn<∞

f ′(ti, θ0)
f(ti, θ0)

n∏
i=1

[f(ti, θ0)dti]. (2)

Note that for Deshpande’s (1990) model with θ0 = 1/2, then sign test U1 is the LMPR test. When the
underlying distribution is logistic , the LMPR test is based on the statistic W+ =

∑n
i=1WiRi, which is

the analogue of the Wilcoxon signed rank statistic for competing risks data. For Lehmann type alternative
LMPR test is based on scores ai = E(E(j)) where E(j) is the jth order statistic from a random sample of
size n from standard exponential distribution.

3 Tests for bivariate symmetry

Assume that the latent failure times X and Y are dependent. Suppose their joint distribution is given by
F (x, y). On the basis of independent pairs (Ti, δ

∗
i) we want to test whether the forces of two risks are

equivalent against the alternative that the force of one risk is greater than that of the other. That is we test
the null hypothesis of bivariate symmetry

H0 : F (x, y) = F (y, x) for every (x, y) (3)

Theorem 3.1 Under the null hypothesis of bivariate symmetry we have
(i)F (1, t) = F (2, t) S(1, t) = S(2, t) λ(1, t) = λ(2, t) for all t,
(ii) P [δ∗ = 1] = P [δ∗ = 0] and T and δ∗ are independent.

The following alternatives to the null hypothesis are worth considering.

H1 : λ(1, t) < λ(2, t); H2 : F (1, t) < F (2, t); H3 : S(1, t) > S(2, t). (4)

For testing H0 against H1 recently Kochar and Dewan have suggested considering the following measure of

deviation between H0 and H1, ∆ =
∫

0<x<y<∞
[ψ(x) − ψ(y)] dF (x) dF (y). Its empirical estimator leads to

the statistic

U2 =
n−1∑
i=1

i(n− i)Wi+1. (5)
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Rejecting H0 for small values of U2. Under H0, n
1
2 {U2

n3 − 1
12}

L→ N(0, 1
120 ).

Deshpande (1990) proposed two tests for testing H0 versus H2 on heuristic grounds. The first test is
the Wilcoxon signed rank type statistic W+ =

∑n
i=1(1− δ∗i)Ri. Another test is based on the U-statistic U3

where (
n

2

)
U3 =

n∑
i=1

(n−Ri + 1)δ∗i. (6)

For testing H0 against H2, one can consider the measure of deviation F (2, t) − F (1, t), which is non-
negative under H2. Then

∫∞
0

[F (2, t) − F (1, t)]dH(t) = P [δ∗1 = 0, T1 ≤ T2] − 1
2 . A U-statistic estimator of

this parameter is the statistic U3 discussed above. Similarly for testing H0 against H3 consider the measure
of deviation S(1, t) − S(2, t), which is non-negative under H3. Then

∫∞
0

[S(1, t) − S(2, t)]dH(t) = P [δ∗1 =
1, T1 > T2]− 1

2 . A U-statistic estimator is given by(
n

2

)
U4 =

n∑
i=1

(Ri − 1)δ∗i. (7)

This statistic was earlier proposed by Bagai, Deshpande and Kochar (1989) to test for equality of failure rates
of independent latent competing risks. Aly , Kochar and Mckeague (1994) proposed Kolmogrov-Smirnov
type tests for testing the equality of two competing risks against the alternatives H1 and H2. Most of the
above tests can be generalized to the case when the data is right censored (Aly et al (1994), Sun and Tiwari
(1995).

Remarks
(i) The various tests are distribution-free under H0 and consistent against their intended alternatives.
(ii) We can also use these tests for the hypothesis λ1(t) = λ2(t) against the alternative that cause-specific

hazards are ordered.
(iii) The statistic U2 puts more weight on the middle observations and is less sensitive to the observations

in the beginning and the end of the experiment. On the other hand, U3 puts more weight to later observations
and U4 puts higher weight to observations in the beginning.

(iv) Deshpande and Dewan (2000) proposed tests for testing bivariate symmetry aginst dispersive asym-
metry. Here the alternatives can be expressed in terms of ordering of sub-survival functions and ordering
of sub-distributions of the maximum of observations and δ . The statistic is a linear combination of two
statistics, the first one is a U-statistic based on minimum and δ and the other one is a U-statistic based on
maximum and δ. The one based on minimum and δ is the statistic U4

(v) The statistics U2, U3, U4 are all linear combinations of the sign statistic and the Wilcoxon-signed rank
type statistic.
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