
Reliability analysis of a dynamic phased mission system

Marc Bouissou
Electricité de France R&D

1 avenue de Général de Gaulle
92141 Clamart France
Marc.Bouissou@edf.fr

Yves Dutuit
Université Bordeaux 1/LAP
351 cours de la Libération

33405 Talence cedex France
Yves.Dutuit@iut.u-bordeaux1.fr

Abstract

The objective of this study is to compute the system reliability over the whole (random) mission time
T1 + T2, and to compare the ability of two formalisms to model and assess system performance. The two
models that will be demonstrated are a Petri Net and a Boolean logic Driven Markov Process (BDMP).

1. Context and objectives

With the increasing complexity and automation associated with systems encountered in the nuclear,
aerospace, chemical, electronic, and other industries, phased mission analysis methodology is being
recognized as the appropriate reliability analysis method for a large number of problems. A phased
mission is a task, to be performed by a system, during the execution of which the system is altered such
that the logic model changes at specified (deterministic or random) times. Thus, during a phased mission,
time periods (phases) occur in which either the system configuration, system failure characteristics, or
both, are distinct from those of any immediately succeeding phase. The use of static models such as
standard fault-trees is, except in a few cases, totally inappropriate for phased mission analysis.
This paper aims to illustrate the use of two reliability analysis methods applied to a simple, but not trivial,
problem. The system proposed as a test case enables us to compare the respective benefits and drawbacks
of a Petri net-based approach [1,2] and of the so-called BDMP (Boolean logic Driven Markov Process)
approach, recently published [3].

Figure 1: System structure of the studied test case

2. Test case definition

The system to be studied is a hypothetical example of phased mission system, as shown in Figure 1. It
consists of two main non-repairable components A and B, and five switches that are used for protection or
reconfiguration functions in different configurations over two consecutive phases as described hereafter:

Phase 1

�� T1 is exponentially distributed with a mean value equal to 1/�� ��1TE 1 = 100hours.
�� Switches K1, K2, K3, and K4 are normally closed.

�� Switch K5 is normally open.
�� Components A and B work in parallel. Their (constant) failure rate is �A = �B = � = 1.10-4 h-1.A

failure of A or B is considered as a short-circuit between the input and output of the component.
�� Possible reconfigurations:

o In case of failure of one component, some switches (K2 and K4 on a failure of A, K1 and
K3 on a failure of B) must be opened, in order to avoid short circuit of the system, with a
probability of failure on demand equal to � = 5.10-3.

o Inadvertent opening of switches can also occur, with a failure rate �S = � = 1.10-4 h-1.
Phase 2

�� T2 is exponentially distributed with a mean value equal to 1/�� ��2TE 2 = 50hours.
�� At the beginning of phase 2, positions of some switches are changed to enable the two active

components to work in series. More precisely: in the nominal procedure, K1 and K4 are open,
then K5 is closed (operations must be done in this order to avoid creating a short-circuit). But
some alterations due to unwanted opening of K1 or K4 during phase 1 may occur. If component A
or B has failed during phase 1, the system cannot be used on the second phase.

3. Test case resolution
3.1 Resolution with a Petri net

Figure 2: A PN modelling the system behaviour in the two phases.

To model in a concise way the behaviour of the system during its phased mission, by using the Petri net
(PN) formalism, a system-based approach has been chosen instead of the usual component-based
approach. The symmetrical configuration of the system has been exploited and an aggregation procedure
has been carried out to obtain the PN shown in Figure 1. Two main subnets make it up. The first one (on
the right side) models both all the possible states (aggregated states) in which the system could be during
its first mission phase (places 1 to 10) and the transitions between them. The second subnet (on the left
side) consists in two parts : one to model the behaviour of the system during its second mission phase
(places 14 and 15), and the other (places 11 to 13) is used to manage the phase sequence.

P14

P15

P13 P12 P11

5� (1-�)3 = 0,985

0,015

�2 �1

! M

(1- �)2 = 0,99

0,01

P10

P2

2�

P1

P4

P9

P3 P8

P5 P7

P6

2�

2�

�

?M

�

�

�

?M

?M

�
?M

?M

3�

3�

?M

3�

3�

3�
?M

?M

3�
� = 0,005

0,995 ?M
3�

A qualitative analysis of the PN enables us to identify the sequences of component failures which result in
the failure of each phase. But this step-by-step procedure is tedious. On the other hand, by animating the
PN model by means of a Monte-Carlo simulation technique, one obtains interesting quantitative
information such as success probability of each phase (system reliability), occurrence time of the first
system failure, mean sojourn time of the system in its different states…

3.2 Resolution with a BDMP

!

FailureOfAFailureOfA

!

FailureOfBFailureOfB

impossible_to_isolate_B
Main_page

impossible_to_isolate_B
Main_page

impossible_to_isolate_A
Main_page

impossible_to_isolate_A
Main_page

due_to_B
Main_page
due_to_B
Main_page

due_to_A
Main_page
due_to_A
Main_page

OR_5
Main_page

OR_5
Main_page

OR_4
Main_page

OR_4
Main_page

system_failure_in_phase_2
Main_page

system_failure_in_phase_2
Main_page

system_failure_in_phase_2
Main_page

system_failure_in_phase_2
Main_page

AND

AND_1AND_1

AND

AND_2AND_2

phase_1phase_1 phase_2phase_2

OR

short_circuitshort_circuit

RO_K2RO_K2

RO_K3RO_K3

OR

system_failure_in_phase_1system_failure_in_phase_1

OR

system_failure_in_phase_2system_failure_in_phase_2

OR

failure_on_phase_changefailure_on_phase_change

RO_K1RO_K1 RC_K5RC_K5

RO_K4RO_K4

!

IO_K2IO_K2

!

IO_K3IO_K3

OR

A_or_B_isolatedA_or_B_isolated

OR

OR_4OR_4

OR

OR_5OR_5

!

IO_K4IO_K4

!

IO_K1IO_K1

AND

impossible_to_isolate_Aimpossible_to_isolate_A

AND

impossible_to_isolate_Bimpossible_to_isolate_B

!

IO_K5IO_K5

OR

system_failuresystem_failure

AND

A_and_B_unavailableA_and_B_unavailable

AND

due_to_Adue_to_A

AND

due_to_Bdue_to_B

FailureOfB
cpts

FailureOfB
cpts

FailureOfA
cpts

FailureOfA
cpts

FailureOfB
cpts

FailureOfB
cpts

FailureOfA
cpts

FailureOfA
cpts

OR_4
Main_page

OR_4
Main_page

OR_5
Main_page

OR_5
Main_page

IO_K3
Main_page

IO_K3
Main_page

IO_K2
Main_page

IO_K2
Main_page

FailureOfB
cpts

FailureOfB
cpts

FailureOfA
cpts

FailureOfA
cpts

FailureOfB
cpts

FailureOfB
cpts

FailureOfA
cpts

FailureOfA
cpts

I !

I ! I ! I !

I !

I !

Figure 3: a BDMP modelling the system in the two phases

The bulk of the BDMP (directly copied and pasted from the KB3 tool [4]) is self-explanatory. The
advantage of this formalism is that it looks like fault-trees. It has the same ability to progressively
breakdown a global event into more elementary events, in a top-down approach. Because of the lack of
space, we cannot give all the formal definition of BDMP: it is available in ref. [3].
Let us just introduce in a few simple words the meaning of the unusual symbols of this model. First of all,

symbols such as

and

simply represent a split link: the names of the origin and target of the
link are below the symbols. Split links are here just to avoid some disgraceful crossings of links in the
drawing. Secondly, black dotted arrows represent the "triggers" of the BDMP: their role is to transform
what seems to be a standard fault-tree into a fully dynamic model. As long as the event at the origin of a
trigger is False, the trigger maintains all the elements in the sub-tree under its target in a "non required"

mode. In this mode, the leaves representing failures in function:
!

 cannot change from state False to
state True. Besides the failures of A and B, the inadvertent openings are represented by such leaves (with

names beginning with IO_). The leaves representing on demand failures: react to a mode change.
When their mode changes from "not required" to "required", they instantaneously can become True with a
given probability. All on demand failures of the system are represented in this way, with names beginning
with RO_ for "refuse to open" and RC_ for "refuse to close". When a mode change occurs at the same
time for several components of that kind, it is possible to specify constraints on the order in which their
reaction must be taken into account. This is done with grey dotted links. Two of these links specify that

the outcome of the opening demands on K1 and K4 must be determined before the attempt to close K5.
The last symbol we must explain is the phase indicator leaf, represented with a clock. The behaviour of
this leaf is as follows: if no trigger points at it (like for phase_1), it is initialised in the True state and
becomes False after an exponentially distributed time. If a trigger points at it (like for phase_2), it is
initialised in the False state and when the origin of the trigger changes from the True to the False state, the
leaf instantaneously becomes True. It goes back to the False state after an exponentially distributed time.
This kind of behaviour makes it easy to link an arbitrary number of phases. It is even possible to define a
cyclic chain of phases: this is consistent with the general theory of BDMPs.

3.3 Compared results

The Petri net was solved using Monte-Carlo simulation. The obtained result for the probability of mission
success was p = 0.92378 after 40 s of calculation (time needed to perform 107 trials). The BDMP was
solved instantly with the Figseq tool [4], which uses an analytical quantification of sequences leading to
the failure of the mission. This second resolution yielded p = 0.92392, and a set of sequences sorted by
decreasing probability. The contributions of the 12 first sequences decrease from 11.9% to 5.96% of the
mission failure probability; subsequent sequences have much lower contributions. The 12 first sequences
can be summarized by the following list, in which we give only one representative of each set of
symmetrical sequences, followed by the number of sequences of that kind (pc means phase change):
IO_K3, pc (2); fail_A, [K2 op & K4 op], pc (2); pc, [RO_K1 & K4 op] (2) ; pc, [K1 op & K4 op],
RC_K5 (1); pc, [K2 op & K4 op], K5 closes, fail_A (2); pc, [K2 op & K4 op], K5 closes, IO_K2 (2); pc,
[K2 op & K4 op], K5 closes, IO_K5(1).
We could also obtain with Figseq the three only success sequences: pc, [K2 op & K4 op], K5 closes, end
phase 2 (1); IO_K4, pc, [K2 op & K4 op], K5 closes, end phase 2 (2).

4. Conclusion
The results obtained with two quite different methods are the same, which constitutes a good cross
validation. Since both models are markovian, any solving method valid for Markov processes could have
been used to solve both models. Therefore, the only significant difference between the two approaches
resides in the model construction. Whereas the BDMP construction has been straightforward and
produced a self explaining, easy to validate model, the Petri net required in this case some further work to
result in a concise graphical representation. The size of the Petri net could be limited thanks to a careful
exploitation of all the symmetries of the system. However, if we had to model a system with the same
behaviour, but made of components having all different characteristics, the Petri net size would obviously
increase, while the BDMP would remain exactly the same. The same remark would apply if we wanted to
introduce repairs. Another interesting result of this study is the illustration of the interest of the sequence
exploration and quantification method used by Figseq, which allows a quick and precise quantification of
a large Markov model and gives interesting qualitative results: the most probable sequences leading to the
mission failure.

References
[1] Y. Dutuit, E. Châtelet, P. Thomas, J. P. Signoret, “Dependability Modelling and Evaluation by Using Stochastic
Petri Nets : Application to Two Test-Cases”, Reliability Engineering and System Safety, 55 : 2 (1997), pp.117 – 124.
[2] D. C. Ionescu, E. Zio, A. C. Contantinescu, “Availability Analysis of a Safety System of a Nuclear Reactor”,
Proceedings of KONBIN’03 Conference, vol. 2, pp. 225 – 233.
[3] M. Bouissou, J. L. Bon, “A new formalism that combines advantages of fault trees and Markov models: Boolean
logic driven Markov processes”, Reliability Engineering and System Safety, 82 : 2 (2003), pp. 149 – 164.
[4] The KB3 and Figseq tools: detailed information, software download at http://rdsoft.edf.fr

http://rdsoft.edf.fr/

	Context and objectives
	Test case definition
	Test case resolution
	Resolution with a Petri net
	Resolution with a BDMP
	Compared results

	Conclusion
	References

