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Abstract

Markov chains have been used successfully to model system use, generate tests, and compute statistics
about anticipated system use in the field. Several reliability models are in use for Markov chain-based
testing, but each has certain limitations. A Bayesian reliability model that is gaining support in field use
is presented here.

1 Motivation

Statistical testing of systems based on a Markov chain usage model has proved itself to be a sound and
cost-effective means to test systems (Kelly and Oshana 2000). Markov chain usage models provide a very
effective means of test generation and a rich body of statistics useful in test planning and test analysis
(Whittaker and Poore 1993; Whittaker and Thomason 1994; Prowell 2003).

Several reliability models have been proposed for use with Markov chain usage models.

• Bernoulli sampling models, which base the reliability estimate on the number of successful and un-
successful tests. These do not take into account variation among tests, and assign equal weight to both
long and short tests.

• Failure state models, which introduce special states in the model to account for failed transitions
(Whittaker and Thomason 1994). These models typically do not provide the probability of failure
when no failures are observed in testing, and make strong assumptions about state transition reliabili-
ties.

• Arc-based Bayesian model, in which a reliability model (Miller, Morell, Noonan, Park, Nicol, Murriel,
and Voas 1992) is applied to individual arcs of the Markov chain (Sayre 1999).

This paper focuses on the arc-based model. This reliability model was originally formulated as a simulation,
and required the generation of many random test cases. Since each test case (depending on the usage
model structure) could be very long, this approach could take considerable time to converge to a worthwhile
estimate, even for smaller models (under 10,000 states). Since Markov chain usage models are seldom very
large, an analytical solution for the reliability estimator and its variance is often faster and more precise than
simulation. Investigation of an analytical solution for the estimator also reveals additional results, such as
the overall probability of failure from any starting state.



2 Definitions

Let P = [pi, j ] be then× n transition matrix of a Markov chain usage model. Every such model has two
special states: asourcestate, which is assumed to be the state with index one, and asink state, which is
assumed to be the state with indexn, and the sole absorbing state. It is further assumed that all states are
reachable from the source, and that there is a path to the sink from every state. LetQ denote the submatrix
of P which omits the last row. For matrixA, let Ȧ denote the submatrix obtained by omitting the last column
of A. ThusQ̇ denotes the square transient submatrix of the Markov chain, and(I − Q̇)−1 is the fundamental
matrix for absorbing chains (Kemmeny and Snell 1976).

Let r i, j be a random variable called thetransition reliability. This random variable counts the fraction of
successful transitions from statei to statej. For the purpose of this paper, we assume ther i, j are governed
by the beta distribution with parametersai, j andbi, j . In terms of the testing record,ai, j −1 is the number of
successful transitions from statei to statej, andbi, j−1 is the number of failed transitions from statei to state

j. Given this information, the momentsE[rm
i, j ] can be easily computed. LetRm =

[
E[rm

i, j ]
]

be the matrices of

expectations, and letVm =
[
Var[rm

i, j ]
]

be the matrices of variances. Letfi, j be another random variable called

the transition failure rate, defined asfi, j = 1− r i, j . Note thatE[ fi, j ] = 1−E[r i, j ] andVar[ fi, j ] = Var[r i, j ].

Let Fm =
[
E[ f m

i, j ]
]
.

To shorten the equations which follow, letFn denote the component-wise product ofQ by Fn, and letRn

denote the component-wise product ofQ by Rn. Dots may be applied:̇Fn is the component-wise product of
Q̇ andḞn.

The single-use reliabilityis defined as the probability that one successfully executes a “use” of the
system under test from a defined start condition to a defined finish condition without observing a failure.
In terms of the Markov chain usage model, it is the probability that one can move from the source state to
absorption in the sink state without encountering any failures. Thesingle-use failure rateis defined as one
minus the single use reliability.

The following is taken from (Kemmeny and Snell 1976).

Theorem 1 Let A be an arbitrary matrix with limm→∞ Am = 0. ThenI −A is non-singular and further:

lim
m→∞

m

∑
i=0

Ai = (I −A)−1.

The following result will occasionally be necessary in order to apply the previous theorem.

Theorem 2 Let A= [ai, j ] be a square matrix whose elements are all such that 0≤ ai, j < 1. Further, assume
that each row ofA sums to less than one. Then limn→∞ An = 0.

PROOF. The matrixA corresponds to the transient portion of a Markov chain transition matrix. Thus
higher powers of the matrix vanish, since absorption is certain.

3 Single-Use Reliability Estimator

One could try to solve for the single-use reliability as follows. Letf ∗i be a random variable counting the
fraction of times one experiences a failure prior to reaching the sink, given that one starts in statei. Then



one can use the method of first passage to obtain:

f ∗i = ∑
k

pi,k fi,k +∑
k

pi,k(1− fi,k) f ∗k .

A naive approach would be to replace thefi, j with their expectations in order to computeE[ f ∗i ]. Unfortu-
nately, this will not work for most models because thef ∗i are not independent (Sayre 1999). To avoid this
problem, the derivations here will use a different approach and make use of the integral forms of expectation
and variance.

Let f (m)
i be a random variable counting the fraction of times that a failure is observed on themth step of

a realization starting in statei, with all prior transitions successful. ClearlyE[ f (1)
i ] = ∑ j pi, jE[ fi, j ].

Let Tm denote the set of all trajectories of lengthm≥ 1 which originate in states1. Eacht ∈ Tm visits
statess1,s2, . . . ,sm+1, in order. Of these, onlysm+1 may be the sink. LetF(t) denote the probability that
trajectoryt executes without failure up to the last step, which then fails. This gives the following equation.

E[ f (m)
s1 ] = ∑

t∈Tm

Pr[t]
1Z

0

Pr[F(t) = f ] f d f .

This sum can be re-written as the sum over all state sequencess1,s2, . . . ,sm+1, factored and re-organized,
with the following expression obtained form≥ 2.

E[ f (m)
s1 ] = ∑

s2

ps1,s2

1Z
0

Pr[rs1,s2 = r1]r1E[ f (m−1)
s2 ]dr1

= ∑
s2

ps1,s2E[rs1,s2]E[ f (m−1)
s2 ]dr1. (1)

Let U be a vector of ones of the appropriate size. Combining equation 1 with the expression for
E[ f (1)

i ] given earlier, and placing the result in matrix-vector form, gives an expression for the vector

F(m) =
[
E[ f (m)

i ]
]

for anym≥ 1.

F(m) =
{

F1U if m= 1
Ṙ1F(m−1) if m> 1.

(2)

The use of the dot in equation 2 is to exclude the sink on all but the last step. The following result can be
shown based on equation 2 form≥ 1 by induction onm.

F(m) = Ṙ m−1
1 F1U. (3)

Let F∗ = [ f ∗i ] be the vector of single-use failure rates. Using equation 3 and theorems 1 and 2 gives the
following.

F∗ =
∞

∑
m=1

F(m)

= (I − Ṙ1)−1F1U. (4)

Equation 4 provides a direct means to compute the expected single-use failure rates for all states, including
the source.



4 Single-Use Reliability Variance

The variance off (m)
i requires computation of the second moment off (m)

i . Following the pattern of the last
section gives the following.

F(m)
2 = Ṙ m−1

2 F2U. (5)

The following equation can be derived for the variance of the single-use failure rate.

E
[
( f ∗i )2] =

∞

∑
j=1

E
[
( f ( j)

i )2
]
+2

∞

∑
m=1

∞

∑
n=m+1

E
[

f (m)
i f (n)

i

]
. (6)

The significant term in equation 6 is the last expectation. Again, by looking at the term over all trajectories

and factoring, the following is obtained, whereF(m,n) =
[
E

[
f (m)
i f (n)

i

]]
.

F(m,n) =
{

(Ṙ1− Ṙ2)F(n−1) if m= 1
Ṙ2F(m−1,n−1) if m> 1.

(7)

Using induction and equation 7 one can show the following forn > m≥ 1.

F(m,n) = Ṙ m−1
2 (Ṙ1− Ṙ2)Ṙ n−m−1

1 F1U. (8)

Combining equation 8 with equation 6 one can obtain the vector of second momentsF∗2 .

F∗2 = (I − Ṙ2)−1F2U +2(I − Ṙ2)−1(Ṙ1− Ṙ2)F∗.

This allows the variances to be obtained.
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