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Abstract 
In this paper we use State Dependent Parameter (SDP) models (a non-parametric 
model estimation approach, based on recursive filtering and smoothing 
estimation) to estimate the main effect sensitivity indices of computational 
models. Especially when coupled with efficient sampling methods, such as the 
quasi-random LP-tau sequence, this method is extremely efficient, allowing for 
drastic reduction in the cost of the sensitivity analysis. Moreover, the method 
allows us also to estimate the first order terms of the High Dimensional Model 
Representation of the model under analysis. 
 
State-of-the-art 
Consider the mathematical or computational model ( )kXXXfY ...,,, 21= , where 
some of the input factors iX  are uncertain. For the non-correlated case, 
sensitivity indices are related to the decomposition (Sobol’, 1990-1993) 
 

∑ ∑∑
>

+++=
i i ij

kiji VVVYV ...12...)(  (1) 

where ( )( )ii XYEVV = ,  ( )( ) jijiij VVXXYEVV −−= ,  and so on. Sobol’ 
decomposition is based on a decomposition of the function f  itself into terms of 
increasing dimensionality (HDMR, H. Rabitz et al. 1999, 2000), i.e., 
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where each term is a function only of the factors in its index, i.e. 
( )jiijijiii XXffXff ,),( ==  and so on. The various terms can be expressed as: 
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Let us now concentrate on the main effects iV , which provide a very important 
measure of sensitivity. The classical strategy for global sensitivity analysis 
methods is to estimate the iV  terms directly, without passing through the 
elementary functions if . These methods (FAST, Extended FAST, correlation 
ratios, Sobol’, etc, see the Handobook edited by Saltelli et al., 2000, for reference) 
are conceived as black-box methods and do not try to use information present in 
patterns, e.g. analysing scatter plots and trying some smoothing of the pattern, if 
any, between to model output and a given input. So, even if they are robust, 
unbiased and applicable to whatever non-linear and complex computational 
model, they do not make the best use of all the information contained in the 
Monte Carlo sample. This makes such methods computationally expensive, with 
a required number of model evaluations of some thousands for a good 
convergence to the solution. This limits the application of variance based 
methods to not too complex computational models, which allow the required 
number of model evaluations to be carried out in a reasonable time. A lot of 
effort has been expended in recent years to reduce the cost of the analysis, either 
by improving the efficiency of the available methods (see e.g. Saltelli 2002), or by 
exploring new routes, such as the Bayesian approach presented by Oakley and 
O’Hagan (2002). In the latter case, Bayesian tools are used to exploit the 
information about the input-output mapping more efficiently than classical 
variance based methods, thus reducing significantly the computational cost of 
the analysis. 
 
In this paper, we first estimate if , and then compute the variance of if , using 
recursive filtering and Fixed Interval Smoothing (FIS) algorithms to fit SDP 
models to the input-output mapping (Ratto et al., 2003). This method allows us to 
estimate both if , and iV , adding valuable information to the sensitivity analysis 
at a much smaller computational cost than classical methods. The convergence 
rate is of the same order of the Bayesian approach by Oakley and O’Hagan but, 
at the same time, the method presented here is simpler, since it is based on 
‘classical’ recursive algorithms, such as the Kalman filter (Kalman, 1960; Kalman 
and Bucy, 1961) and recursive FIS. 
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The method 
The present methodology exploits signal processing and time series analysis 
tools, in particular an approach to nonstationary and nonlinear signal processing 
based on the identification and estimation of stochastic models with time 
variable (TVP) or state dependent (SDP) parameters. The reader should consult 
Young (1999, 2000), who develops these TVP/SDP algorithms and provides full 
references on the subject.  
Although such nonstationary and nonlinear systems exhibit nonlinear behaviour, 
this can often be approximated well by TVP (or piece-wise linear) models, the 
parameters of which can be estimated using recursive methods of estimation in 
which the parameters are assumed to evolve in a simple stochastic manner (e.g. 
Young, 1984, 1999). On the other hand, if the changes in the parameters are 
functions of the state or input variables (i.e. they actually constitute stochastic 
state variables), then the system is truly nonlinear and likely to exhibit severe 
nonlinear behaviour. Normally, this cannot be approximated in a simple TVP 
manner; in which case, recourse must be made to the alternative, and more 
powerful SDP modelling methods. 
 
There is no reason why we should not consider the set of Monte Carlo model 
evaluations as a time series, and the SDP modelling method can be applied to 
these data in order to estimate the first order terms of the model decomposition. 
In SDP time series modelling, the natural ordering of the data along the time 
coordinate is replaced by an ordering based on the ascending value of the state 
variables (or inputs), making the SDP model estimation similar to ‘pattern 
recognition’. This is equivalent to analysing scatter plots between a model input 
jX  and the output Y and so allows SDP modelling to be used as a method of 

estimating the first order terms in the decomposition of the computational model 
given in (2). 
 
A SDP model definition suitable for estimating the first order terms of the model 
decomposition can take the form, 
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where kjXb i
jj ,...,1),( )( = , are the state dependent parameters. It can be seen that 

each term of the sum (4) is a function of only one model input, i.e. the 
representation (4) is equivalent to the model decomposition (2) limited to the first 
order terms. It is further assumed that all the remaining terms behave like a 
white noise, i.e. the model is seen as a stochastic non-linear system. 
Now the index i indicates the i-th model evaluation of the Monte Carlo sample, 
i.e. i=1,…,N. To make explicit the link with signal processing, the standard signal 
application field of SDP modelling, the index i should be replaced by t, indicating 
the time co-ordinate (so, t=1,…,N). 
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The SDP model estimates all the terms simultaneously, allowing us to use a 
single sample to estimate all indices. Moreover, the Monte Carlo sample is a 
standard one (pure random sample, Latin Hypercube, LP-tau, etc) and does not 
require a particular design, such as the classical variance based methods. This 
also allows it to be applied in the case of dependent inputs. However, the 
convergence rate depends on how the sample is generated. If quasi-random LP-
tau random numbers are used, the convergence rate is very high, while using 
Latin Hypercube or pure random samples convergence is significantly slower. 
This is clearly due to the more efficient exploration of the parameter space 
provided by the LP-tau quasi-random sequence. 
 
Application 
We have tested the method with different models, always with extremely rapid 
convergence rates. Here, we show some significant results for the Level E model. 
Level E was used both as a benchmark of Monte Carlo computation (OECD 1989) 
and as a benchmark for sensitivity analysis methods (Level S, OECD 1993). This 
test case has been extensively used by several authors, see Saltelli and Tarantola 
(2002) for a review. The model predicts the radiological dose to humans over 
geological time scales due to the underground migration of radionuclides from a 
nuclear waste disposal site. 
 
The model has 12 input factors and is characterised by a strong non-linearity. 
Among the 12 parameters, 4X  (=v(1), water velocity in the first geosphere layer) 
and 12X  (=W, stream flow rate) have the largest main effect over the simulated 
period. In Figure 1 we show the sensitivity indices versus time for these two 
parameters and compare the asymptotic values estimated with standard SA tools 
(Sobol’ method), taking 1,000,000 runs, with the SDP estimation having total 
costs of 1024 and 8192. The samples were generated using LP-tau quasi-random 
sequences. We can see that already with only 1024 runs, which is a very small 
sample size for this kind of model, the absolute errors of the estimates is of the 
order of 0.01-0.02 in a sensitivity scale range of [0, 1]. There is only a critical point 
for W, where the drop of the sensitivity index at t=10 is shifted to t=11. 
Moreover, on increasing the total cost to 8192, convergence is already attained.  
Comparing total costs, with the Sobol’ technique, we would need about 40,000 
model runs to reach an accuracy comparable to the cheaper SDP model 
estimation of 1,024 model runs, i.e. the SDP modelling approach reduces the 
computational time by a factor 40 in this case! Conversely, 1024 runs for the 
Sobol’ estimates are too few, with absolute errors that can reach 0.7-0.8, i.e. 
totally unreliable estimates. 
 
In addition to sensitivity estimates, the SDP modelling approach also allows us 
to estimate the first terms in the model decomposition. The plots of such 
functions for v(1) and W at the time t=10 are shown in Figure 3. The added value 
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of the SDP modelling approach is evident by looking at the clear representation 
of the first order input-output mapping between v(1) and W and the output Y (the 
radiological dose). 
 
Conclusions 
The use of SDP models is a powerful tool for a fast and accurate estimate of main 
effect sensitivity indices of computational models. All the estimates are 
performed with a unique sample, which can be any standard Monte Carlo 
sample. However if efficient quasi-random number generators are used, such as 
the LP-tau sequence, the efficiency of the method is further enhanced, with a 
significantly faster convergence. The method allows us also to estimate the first 
order terms of the HDMR of the model under analysis at no additional cost. 
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Figure 1. First order sensitivity index vs time for parameter v(1) (X4). 
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Figure 2. First order sensitivity index vs time for parameter W (X12). 
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Figure 3. First order terms of the HDMR of the Level E for v(1) (= 4X ) and W (= 12X ). Solid 

lines are for the total cost of 8192 runs; dotted lines for the total cost of 1024 runs 
(the scales of inputs and output are normalised). 


