
 
 

Sensitivity Analysis in Conjunction with Evidence Theory Representations of 
Uncertainty 

 
J.C. Helton,1 W.L. Oberkampf, J.D. Johnson 

Sandia National Laboratories, Albuquerque, NM 87185-0779 
 
Uncertainty analysis and sensitivity analysis should be important components of any analysis of 
a complex system, with (i) uncertainty analysis providing a representation of the uncertainty 
present in the estimates of analysis outcomes and (ii) sensitivity analysis identifying the 
contributions of individual analysis inputs to the uncertainty in analysis outcomes.[1]  
Probability theory provides the mathematical structure traditionally used in the representation of 
epistemic (i.e., state of knowledge) uncertainty, with the uncertainty in analysis outcomes 
typically represented with probability distributions and summarized as cumulative distribution 
functions (CDFs) or complementary cumulative distribution functions (CCDFs).[2-4] A variety 
of sensitivity analysis procedures have been developed for use in conjunction with probabilistic 
representations of uncertainty, including differential analysis,[5, 6] the Fourier amplitude 
sensitivity test (FAST) and related variance decomposition procedures,[7-11] regression-based 
techniques,[12, 13] and searches for nonrandom patterns.[14] 
 
Although probabilistic representations of uncertainty have been successfully employed in many 
analyses, such representations have been criticized for inducing an appearance of more refined 
knowledge with respect to the existing uncertainty than is really present.[15, 16] Much of this 
criticism derives from the use of uniform distributions to characterize uncertainty in the presence 
of little or no knowledge with respect to where the appropriate value to use for a parameter is 
located within a set of possible values. As a result, a number of alternative mathematical 
structures for the representation of epistemic uncertainty have been proposed, including evidence 
theory, possibility theory, and fuzzy set theory.[17] 
 
Evidence theory provides a promising alternative to probability theory that allows for a fuller 
representation of the implications uncertainty than is the case in a probabilistic representation of 
uncertainty. In particular, evidence theory involves two representations of the uncertainty 
associated with a set of possible analysis inputs or results: (i) a belief, which provides a measure 
of the extent to which the available information implies that the true value is contained in the set 
under consideration, and (ii) a plausibility, which provides a measure of the extent to which the 
available information implies that the true value might be contained in the set under 
consideration. One interpretation of the belief and plausibility associated with a set is that (i) the 
belief is the smallest possible probability for the set that is consistent with all available 
information and (ii) the plausibility is the largest possible probability for the set that is consistent 
with all available information. An alternative interpretation is that evidence theory is an 
internally consistent mathematical structure for the representation of uncertainty without any 
explicit conceptual link to probability theory. The mathematical operations associated with 
evidence theory are the same for both interpretations. Just as probability theory uses CDFs and 
CCDFs to summarize uncertainty, evidence theory uses cumulative belief functions (CBFs), 



cumulative plausibility functions (CPFs), complementary cumulative belief functions (CCBFs), 
and complementary cumulative plausibility functions (CCPFs) to summarize uncertainty. 
 
Although evidence theory is beginning to be used in the representation of uncertainty in applied 
analyses, the authors are unaware of any attempts to develop sensitivity analysis procedures for 
use in conjunction with evidence theory. Due to the importance of sensitivity analysis in any 
decision-aiding analysis, the potential usefulness of evidence theory will be enhanced if 
meaningful and practicable sensitivity analysis procedures are available for use in analyses that 
employ evidence theory in the representation of uncertainty. As a result, the focus of this 
presentation is on the development of sensitivity analysis procedures for use in conjunction with 
evidence theory representations of uncertainty. 
 
The primary emphasis is on sensitivity analysis procedures based on complete variance 
decompositions. [8-11]  The underlying idea comes from viewing CBFs and CPFs (or, 
equivalently, CCBFs and CCPFs) as defining envelopes that contain all possible distributions for 
a given analysis result that are consistent with available information on the uncertain analysis 
inputs. Each of the possible distributions contained in such an envelope derives from possible 
distributions for the uncertain analysis inputs and thus has its own variance decomposition. The 
end result is that there is not a unique variance decomposition for an analysis outcome; rather, 
there is a range of possible decompositions that derives from the evidence theory structure (i.e., 
beliefs and plausibilities) assigned to the individual uncertain analysis inputs. Thus, the 
sensitivity measure for a particular analysis input will not be a unique variance contribution but 
rather a range of possible variance decompositions. More specifically, the variance 
decompositions associated with a particular analysis input will have an evidence theory structure 
that derives from the collective evidence theory structure assumed for all the inputs and the 
properties of the model(s) involved in the analysis. There will also be a correlation structure 
involving the variance decompositions associated with the individual analysis inputs. 
 
The presented analysis strategy is to use a sampling procedure such as Latin hypercube 
sampling[18, 19] to develop a mapping between analysis inputs and analysis results. This 
mapping is then reused many times to develop the multiple possible variance decompositions 
and associated evidence theory structure (i.e., beliefs and plausibilities) for each analysis input. 
The result is a sensitivity analysis that uses an evidence theory structure to display the 
implications of the evidence theory representations of the uncertainty in each analysis input. 
However, the computational implementation of the analysis is based on making efficient use of 
ideas and procedures originally developed for use in analyses based on a probabilistic 
representation of uncertainty. 
 
The analysis procedure is illustrated with a study of a hypothetical weak link/strong link system 
of the type used to assure the inoperability of high consequence systems under accident 
conditions. 
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