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ABSTRACT: Sample sizes affect identification of important inputs for computer models. For illustrative
purposes, a partial differential equations model with 84 input variables is used to investigate the behavior of
R? as an importance indicator for various sample sizes and designs.

1 INTRODUCTION

Sample sizes affect identification of “important” in-
puts for computer models when one is using statis-
tical measures, like correlation. In this regard, it
is difficult to make useful general statements about
sample size—like, one needs n samples—because ef-
fects depend on the particular model being studied.
In this paper, we present illustrative results for an
environmental pathways model with 84 inputs. Our
purpose is to gain insight into possible sample size
effects for a realistic model with a moderate number
of inputs, for which the number of computer runs
is not a limitation. In the sections that follow, we
define in mathematical terms what we mean by “im-
portance,” present an experimental design for com-
puter experiments, show typical results for a single
case study and, finally, summarize results from sim-
ulation experiments using different sample sizes.

2 SITUATION

Suppose that the prediction y from a model m(-) is
determined by a vector = of input variables. The
input variables can define initial conditions of a sys-
tem being modeled as well as parameter values in
the rules determining y from the initial conditions.
We think about the importance of individual inputs
and, more generally, the importance of subsets x*
of inputs in the sense that they “drive” or “control”
the calculation of y. Let us assume that a probabil-
ity distribution describes variation in the model input
vector x. That is, « is a random variable with prob-
ability (density) function f,. One can think of f,
as describing incomplete knowledge of values of z,
or imprecisely specified conditions being modeled,
or the range of values for which the model m(-) is
designed to operate. It is significant that we will
be considering global importance over a domain of

values of = and not local importance or the effect
of an incremental change in x about a nominal or
fixed value.

The prediction y(x) depends on the entire input
vector . We introduce the restricted prediction
y(2z*) that depends only on a subset =* of inputs
as follows. Let f; be the (marginal) probability
density of the subset x*. The distribution of the
complementary subset =* conditioned on the value
of the subset =* is denoted by
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The com;)onents of = are not required to be statis-
tically independent. We define y(+*) to be the con-
ditional expectation of y, conditiona on the value
of a9,
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The predictor y(z*) is the'value of y at +* averaged
over the values of the remaining variables z°. We
arrive at a measure of importance through consider-
ation of the sguared error loss function

L(x) = [y(x) = §=*)] €)

and its expected value, the mean sgquared error of
prediction,
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Because the variance of y can be written
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the importance of the subset «* can be measured by
the Pearson correlation ratio (Kendall & Stuart 1979)
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which is a value between zero and one. The Pearson
correlation ratio has been used aso by Krzykacz
(1990) and by Iman & Hora (1990).

The sample “multiple correlation coefficient” f2
from a random effects model is a biased estimator of
the correlation ratio n? (McKay 1995, 1997). The
estimator takes the form
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The {y;;} are model caculated values from
an independent random sample {af,---,23}
of %, and conditionally independent samples
{a%, -, 23, | 2% = 2i} of a7,

The objective to find important subsets z° is
closely related to the familiar process of subset se-
lection in multiple-regression anaysis. In the fol-
lowing sections, we examine the quality of £? for
this task. Evaluation is based on three criteria. One
criterion is power. The power of £? to identify truly
important inputs should be high. Next, we look at
the probability that truly unimportant inputs are in-
correctly identified as being important. This proba-
bility should be low. The final criterion is consis-
tency. That is, the inputs identified as important by
R? should remain fairly constant across independent
samples of the same size. The manner in which £
performs with respect to these criterion depends on
the specific model m(-) and the sample size and de-
sgn N =1 x J.

3 SUBSETS OF SIZE ONE:
INDIVIDUAL INPUTS

We present results of the investigation of /% for
the simplest case—subsets of size one. To see how
sample size might affect the performance of /2%, we
performed a ssimulation experiment.

3.1 Experimental design of the sample

When the inputs are independent, a single set of com-
puter runs can be reused to calculate k2 for each
input with an experimental design based on Latin
hypercube sampling (McKay, Conover & Beckman
1979). In an LHS of size /, the range of each input
variable is stratified into / intervals of equal prob-
ability. Values are sampled from the conditional
probability distribution in each interval and com-
bined completely at random across inputs. Obvi-
ously, LHS is appropriate only for statisticaly inde-
pendent random variables. For a “replicated” LHS
(rLHS) of size N = [ x J, J independent ran-
dom combinations are constructed. In the result-
ing sample design, [ distinct values of each in-
put are paired with .J independent combinations of
values of the other inputs. Therefore, for each
input, the N calculated output values can be la
beled {y;; | j=1,---,J; I =1,---, [} and usedin
Equation 7 to calculate an R?* for the input.

3.2 Case study

In the case study used for the simulation experiment,
the model is an environmental pathways model hav-
ing 84 inputs (see McKay et a. 1992). The model is
a set of differential equations describing the flow of
material within a network of 8 interconnected com-
partments. The output is the equilibrium concentra-
tion in one of the compartments. The inputs are the
transfer rates in the differential equations. As part of
the investigation of properties of /22, we added 16
dummy inputs not used in any calculation. Values
for these fictitious inputs were randomly assigned.
We treat al 100 inputs as statistically independent
and use the experimental design of Section 3.1. Re-
sults for a typical analysis using the largest sample
size in the simulation experiment are presented in
the next section. The sample size of N = 5000 is
allocated to / = 100 and J = 50. While there is
still some sample variability even for this large de-
sign, we think that the example is a good and fair
illustration of a well designed experiment. The ob-
jective of the analysis is to identify those inputs that
individually (singly) have distinguishably larger ef-
fects on the output than do the remaining inputs.
Although individually important, it may not be the
case that collectively they form important subsets of
Sizes greater than one. We leave that discussion to
another time.

3.3 Typical results from case study

The R? values from an [ = 100 and ./ = 50 design
are plotted in Figure 1, largest to smallest. The graph
shows 4 distinct sets of inputs. Inputs with the largest
R?* values are those with labels {1,68,69}. Those
with the next largest are {24. 63, 84}. Those with the
third largest value of R* are {35,48,67.83}. The
fina set is all the other inputs. Within each set, the



inputs are not distinguishable as to importance. We
omit theoretical discussion of the graph.
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Figure 1. ” values for an / = 100 and .J = 50
design with the top 10 inputs indicated.

Figure 2 gives graphical displays of the effect of the
top 9 inputs. The 100 values of each input are on the
horizontal axis. The 5000 values of y are ranked and
scaled by 5000. There are 50 transformed values of
y corresponding to each value of an input. It is the
average of these values that is plotted in Figure 2.
The variables in the top row in the figure account for
low values (around 0.2) of y. The effect of the Sth
input in the lower right corner is slight, causing only
a small trend about the overall average value of 0.5.
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Figure 2. Patterns of average rank-transformed
y for top 9 inputs.

4 SIMULATION STUDY OF R?

In order to evaluate power to identify, false identifi-
cation and consistency, we performed a simulation
experiment composed of 25 different case studies
like the one in the last section. Values of / from
the set {5, 10, 20, 50, 100} were each matched with
values of .J from the set {2, 5. 10, 20,50} to form the
25 different cases. Each case study was repeated 9
times to allow for visua examination of sample-to-
sample variability and consistency.

4.1 Power to identify

The term “power” is used in a technical sense to
refer to the probability that £? can distinguish a
true model input from a dummy input variable, as
described in the next section. The plots in Figure
3 show how the values observed for R? in our
simulation study change as a function of / and .J.
For the / = 5 and ./ = 2 case in the upper left, the
relatively straight line indicates the inability of /? to
identify important inputs. Moving down from that
plot, we see some improvement. However, moving
horizontally with .J increasing to 50, we see at |least 6
inputs beginning to stand out. The graph in the lower
right shows that 10 inputs stand out. As before, we
omit theoretical discussion of the figure.
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Figure 3. Patterns of sorted /% for 100 inputs for
different sample designs / and .J.

4.2 Incorrect identification

Sixteen dummy inputs were included with the 84 real
inputs in the analyses. Their frequency of occurrence
in the top 10, for example, would be an indication of
the inability of £? to identify important inputs. If &?
were unable to distinguish the dummy inputs from
the real ones, one would expect to see, on average,
1.6 dummy inputs among the top 10 selected. If f2?
were selecting inputs at random, then at least one of
the dummy inputs would appear in the top 10 in 85%
of samples. Therefore, we look for / and ./ valuesfor
which few dummy inputs appear. Table 1 suggests
the region towards the lower right is acceptable.

Table 1. Average number of dummy inputs in top
10 from 9 simulations of 25 case studies.

Value Value of J
of | 2 5 10 20 50
5 1.2 12 09 1.1 0.7
10 1.7 10 07 0.8 0.3
20 20 08 04 07 0.3
50 19 04 08 0.1 0.1
100 1.3 13 01 0.1 0.0




4.3 Consistency

We examine the consistency of variable selection
using k?* by looking at the composition of the sets
of the top £ inputs, for k£ = 1,2,---,100. Let s(k)
be a subset selection vector of length » = 100.
The elements of s(k) are 0-1 indicators of the &
inputs with the largest £ values. We measure the
consistency of selection between any two cases, as
a function of &, by the squared distance between
their normalized subset selection vectors. For this
simulation study of 9 cases, we compute the mean
squared distance (MSD) for the 36 distinct pairs and
plot MSD as a function of & in Figure 4. The MSD
is calculated as follows.

d,']‘(k) = ﬁ[sz(k) - Sj(k)]

. 9
MSD(k) = %Z Y di(k)dij(k)
i=1 j=i+1

where 1" indicates transpose of the vector. For com-
parison, when the k£ out of »n ones of s(k) are as-
signed at random, the expected value of MSD is
linear in k& and given by

E[MSD(k)] = 2(1 - 5) .

n

(10)

The graph in the upper left corner of Figure 4 in-
dicates that for the / = 5 and .J = 2, the selection
of subsets appears to be random, by comparison to
Equation 10. That is, for this design, £* cannot dis-
tinguish among the different inputs. Therefore, there
iS no consistency across samples. Sample size effects
are inferred by examination of the figure.
J
2 20

I
AN
™~ T\

Figure 4. Patterns of MSD for & from 1 to 100 for
different sample design values of / and .J.
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When the top 10 inputs in the / = 100 and J =
50 designs comprising the graph in the lower right
corner of Figure 4 are replaced by dummy inputs,
the graph changes to that in Figure 5. The relatively
straight line is the one predicted by Equation 10 for
100 random inputs, and supports the hypothesis that
there are only 10 distinguishably important inputs.
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Figure 5. MSD for / = 100 and J = 50 with
the top 10 inputs replaced by dummies.

5 CONCLUDING REMARKS

The simulation study suggests directions for impor-
tant simulation and mathematical exploration. The
study points out weaknesses of /2? as a measure of
importance for smaller sample sizes. It also shows
that caution is advisable until sample size effects are
known for the model under investigation. The sim-
ulation study also suggests interesting and powerful
properties of /? as an importance measure.
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