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A Bayesian procedure is presented for estimating the reliability of a series system of indepen-
dent binomial subsystems and components. The method considers either test or prior data
(perhaps both or neither) at the system, subsystem, and component level Beta prior distri-
butions are assumed throughout. Inconsistent prior judgments are averaged within the simple-
to-use procedure. The method is motivated by the following practical problem. It is required
to estimate the overall reliability of a certain air-to-air heat-secking missile system containing
five major subsystems with up to nine components per subsystem. The posterior distribution
of the overall missile-system reliability from which the required estimates are obtained is

computed.
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1. INTRODUCTION

The problem of obtaining Bayesian estimates of
the reliability of a series system of independent pass/
fail (binomial) components is an important one. It
was initially solved by Springer and Thompson
(1966a, 1969) for the case of component beta prior
distributions. The re_:sulting.posterior-systcm reliabil-
ity distribution is found by evaluating the inversion
integral of the product of the Mellin transforms of
the component posterior beta distributions (Springer
1979). The Springer and Thompson approach uses
binomial-test and beta-prior data for each compo-
nent.

Mastran (1976) and Mastran and Singpurwalla
(1978) extended the Bayesian procedure to permit the
reliability assessment of a coherent system using test
and prior data at both the component and system
levels. Cole (1975) also described a Bayesian pro-
cedure for integrating component and system-level
test and prior data. Dostal and Iannuzzelli (1977)
proposed a similar method but did not assume that
system-test data are available. An excellent survey of
Bayesian interval estimation methods for the reliabil-
ity of various systems was presented by Thompson
and Haynes (1980).

Some real-world series systems have a more com-
plicated data structure than any of the existing
models can accommodate. In some cases, there may
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exist test or prior data at the system, subsystem, and
component levels. There may be even more than
three configuration levels in the series system with
either test or prior data at each level Only three
levels are considered here, however.

The Bayesian model to be presented was moti-
vated by the following problem. It was required to
estimate the overall reliability of a certain air-to-air
heat-seeking missile system under specific use con-
ditions. The system as represented here consists of
the five major subsystems and associated compo-
nents given in Table 1. The numbers in parentheses
are subsystem and component identifiers, which will
be considered later. Note that the components in the
warhead are coded A-I to avoid problems with se-
curity classification. The test and prior data for each
of the components and subsystems, as well as the
overall system, are presented in Section 3, The prob-
lem is to combine all of these data to estimate the
reliability of the overall missile system in its oper-
ational context. Inconsistencies in prior judgments
will be averaged by the analyst as described in Sec-
tion 2.

_ The preceding system may be generally described
as one in which there are m independent subsystems
in series in which the ith subsystem contains &, inde-
pendent components in series. There exist either bi-
nomijal test or prior data (possibly both or perhaps
neither) on the components, subsysterns, and system.
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Tabla 1. The Major Subsystems and Components of a Certain Air-to -Air
Heat- Seeking Missile System

o Logistics/
Warhead Missile Aircraft cy Maintenance
(1) (2) (3) 4 (5)
A(11) Power supply Flight structure Airspace controi Ground
(21) (31) effectiveness (41) handling (51)
B(12) Target acquisi- Avionics (32) Rules of engage- Storage (52)
tion/guidance ment (42)
system (22)
C(13) Motor (23) Power (33) IFF/visual (43) Missile avail-
ability (53)
D(14) Flight structure Flight control Aircraft on-station
(24) (34) availability (44)
E(15) Aircraft inter- Environmental Radio communica-
faca (25) (35) tions (45)
F(16) Control (26) Acquisition/fire
contral (38)
G(17) Launching (37)
H(18) Missile interface
(38)
1(19) Human interven-
tion (39)
NOTE: Headings d subsy . IFF means id friend or foe.

The problem is to statistically use all of these data to
make inferences about the overall system reliability;
specifically, both point and interval estimates are de-
sired. These inferences were to be used as figures of
merit for examining the reliability impact of ad-
ditional testing within the overall system.

The distinguishing features of our approach are
the following:

1. the statistical consideration and “simultaneous
use of test or prior data at the component, sub-
system, and system level of a series system.

2. the development of a method for an interactive
analyst to average inconsistent prior judgments at
the subsystem and system levels.

3. the use of some key approximations (the accu-
racy of which is examined as part of the method) that
provide a simple and easily applied closed-form solu-
tion to the problem.

In Section 2 we present a proposed solution to the
problem. The missile-system problem is again con-
sidered in Section 3, where it is used to illustrate the
method. Some conclusions are presented in Section 4.

2. A TWO-STAGE BAYESIAN MODEL

A binomial model describes the number of sur-
vivors s in n independent tests; the outcomes, success
or failure, are statistically independent for each test;
and the reliability (the survival probability) r is con-
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stant across the tests. If these conditions are true,
then the number of survivors follows the well-known
binomial distribution given by

Sisirin) = rl—rTs

n!
(n — s)ls!

s=0,1,....,n, O<r<i. (1)

A widely used prior distribution for r is provided
by the béta distribution, with pdf given by

r
g(r;p. q) = %2)—;%)) i1 =,

0<r<l, pq>0, (2

which will henceforth be denoted by a A(p, ) distri-
bution. What about the assumption of a beta prior
distribution? Weiler (1965) concluded that the effect
of assuming a beta prior in binomial sampling, when
in fact the true prior is not a beta distribution, is
negligible in many practical applications. It is also
known that the beta family is rich in shapes. In addi-
tion, Dyer and Chiou (1984) found that only the beta
family gives a most conservative prior distribution
with specified mean (where conservatism refers to re-
straint of extraneous information that is embedded in
any prior) from among nine broad families of priors.
They also concluded that the beta family is the best
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Figure 1. Series System Configuration, Notation, and Data Structure.

choice for use in determining the most conservative
prior when there is no available prior information
about the reliability in question. Colombo and Con-
stantini (1981) also provided a rational reconstruc-
tion of the beta prior distribution in binomial sam-
pling.

The mean and variance of (2) are p/(p + q) and
pa/lp + @*p + g + 1)], respectively. Mosleh and
Apostolakis (1982) described a simple procedure for
identifying values for p and g for specified moments
and percentiles. Their method is particularly appro-
priate for high-reliability devices in which the beta
distributions are concentrated near 1.

Figure 1 shows the system configuration, notation,
and data structure considered here. Note that a
double subscript denotes test and prior data at the
component level, a single subscript denotes data at
the subsystem level, and no subscript designates
system-level data. Prior beta distribution parameters
are identified with the superscript o, and the absence
of such a superscript denotes binomial test results.
The component identifiers and corresponding data
subscripts contain two terms, i and j; i identifies the
subsystem, and j denotes the component within the
subsystem.

Consider the component, subsystem, and system
beta prior distributions and parameters. At the com-
ponent level a f(sj; + 1, nfj —sf; + 1) prior distri-
bution is used in which, for the case of nonnegative
integers, s, may be interpreted as one less than the
number of prior component successes and nj; is two

less than the number of prior component tests. This
beta parameterization is the form considered by
Springer and Thompson (1966a,b, 1969) and their re-
sults, described in Section 2.3, are directly applicable.
For example, nf, = sj; =0 is interpreted as one prior
success in two prior tests and corresponds to a (1, 1)
or uniform prior. In the case of noninteger values of
s%; or nfj, no such interpretation is possible; in this
case, s;; and nj) simply denote component prior beta
parameters. For example, njj = —1, 5j; = —1 yields
Jeffreys’s noninformative prior (Box and Tiao 1973),
which is also known as the arcsine distribution. In
the case of subsystem and system beta prior distri-
butions, B(s?+1, nf—s;+1) and B(s°+ L, n° —
s° + 1), respectively, the parameters are restricted to
being nonnegative integers (for reasons presented
later) and the previous interpretation holds.

The induced prior distribution for a given sub-
system is the posterior distribution based on all com-
ponent prior and test data in a series configuration.
In the same way the subsystem posterior distri-
butions together induce a prior at the system level. In
addition to these induced priors, additional prior
data in the form of (s¢, nj) or (s°, n°) that are not a
function of the lower-order data in the system may
exist. The corresponding B(sf + 1, nf — s? + 1) and
B+, n°=s"+1) priors are referred to here as
native prior distributions.

Figure 2 presents the procedural steps of a two-
stage Bayesian solution to the problem. The steps in
the procedure will now be described.

TECHNOMETRICS, MAY 1988, VOL. 30, NO.2
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Bayesian Analysis Model for Series Systems

-
Step t: Compute the Component Pasterior Beta Distributions

Step 2: Compute the Induced Subsystem Prior Approximate
Beta Distribution

Stage 1 - Step 3: Examine the Quality of the Beta Approximation in
Subsystem-Level Siep
Analysis Siep 4: Weight and Combine the Native and Induced Subsysiem

Prior Beta Disaributions
| Step 5: Compute the Subsystem Posterior Beta Distribution
(Repeat Steps 1-5 for Each Subsystem)

-Slcp 6: Compute the Induced System Prior Approximate Beta
Distribution
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Stage 2 - Step §

System-Level .
. Step 8: Weight and Combine the Native and Induced System Prior
Analysis Beuw Distributions 4

Step 9: Compute the Final System Posterior Beta Distribution

Figure 2. The Steps in the Two-Stage Bayesian Procedure.

2.1 Step 1: Compute the Component Posterior
Beta Distributions

Consider the jth component in the ith subsystem.
For a binomial sampling model f(s;|r,; n;) and a
B(s; + 1, nf; — 3 + 1) prior on r;, the corresponding
posterior distribution is a f(s; + sy+ 1, ny+
ny, — s;; — sf; + 1) distribution. Of course, if there are
no binomial test data for a given component, then
the posterior is the same as the prior distribution. In
the absence of prior test results, some type of nonin-
formative prior must be used, such as a (1, 1) or (.5,
.5) distribution.

2.2 Step 2: Compute the Induced Subsystem
Prior Appropriate Beta Distribution

The induced prior distribution for the reliability ,
of the ith subsystem, g(r), is the distribution of the
product of k, independent beta random variables in
which the jth variable has the posterior beta distri-
bution given in Section 2.1. Note that, for notational
ease, we have suppressed the conditional dependency
of g(r;) on the component prior and test data, a con-
vention that we will continue to follow. Although it
is often possible to determine the exact distribution
of this product (see Sec. 2.3), Thompson and Haynes
(1980) suggested approximating the exact subsystem
prior with a beta distribution having the same first
two moments. Springer (1979) also mentioned such
an approximation. Using this approximation, we
compute the approximate induced prior distribution
on r;, denoted by g,(r), as a f(a;, b) distribution in
which

a=[M}l—-M)-V MLV,
b= [Mi(1 = M)* = V(1 = MYV, 3
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and

k,
M.= ﬁ [M]

‘ j=1 n?j+nu+2

V= & [(_Sfl'*‘su*‘l)(sfj‘*'su'*'z)]_Mz @)
j=1 L(ngy+ny 4+ 2)(ng +nyy + 3) .

The corresponding approximate induced prior beta

" cdf on r; will be denoted by G, (r).

2.3 Step 3: Examine the Quality of the Beta
Approximation in Step 2

The exact induced subsystem prior density g(r)
can be obtained in closed form for the case in which
si; and nj; are nonnegative integers. Springer and
Thompson (1966a) obtained the solution by expand-
ing the Mellin transform of the induced subsystem
prior in partial fractions and then applying the
Mellin inversion integral (Springer 1979, p. 96).
Springer and Thompson (1969) provided a FOR-
TRAN computer program for performing the neces-
sary computations. For example, using this program
for k,=3 and component data n}, +n, =s? +
Sy =0,n +n;=9,55 +5,=7n}+n,; =4 and
5?3 + 553 = 3 yields the exact induced ith subsystem
prior density function g(r) = 238 — 40.00 r} +
60.00 r{ — 8571 r] + 90.00 7} — 26671 (0 < r, <
1). A few other examples may be found in Springer
and Thompson (1966a,b, 1969) and Springer (1979).

Unfortunately, the FORTRAN code is quite com-
putationally unstable. Its use results in frequent nu-
merical problems for practical data sets and multiple
precision floating-point arithmetic only yields some
improvement. We have found that these problems
frequently occur with data indicative of highly reli-
able components, which is often the case in practice.
Thus we use Monte Carlo simulation to approximate
the exact-induced ith subsystem prior distribution.
For convenience, the simulation-produced exact-
induced ith subsystem prior empirical distribution
function will be denoted by G(r).

Thus in Step 3 we examine the quality of the beta
approximation to the exact-induced ith subsystem
prior distribution by simulating the distribution of
the product r, =Y., r,;, where r, has a f(s; +
st +1, ny +nf; —s; —sjy +1) distribution. We then
examine the quality of the beta approximation by
computing the Kolmogorov=-Smirnov (KS) two-sided
p value for the beta hypothesis (Conover 1980). The
empirical cdf for this calculation is based on a sample
of 100 observations of the product r;. The assump-
tion of a beta-induced subsystem prior cannot be
rejected at a significance level less than or equal to
this p value. In other words, the larger the p value the
better the assumption of a beta-induced prior ap-
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proximation. For small p values, the beta approxi-
mation is unacceptable. In this case, the procedure
may be continued using a nonparameteric density
function estimate of the exact distribution; the den-
sity estimate should be based on a large Monte Carlo
sample of, say, 1,000 observations to ensure good
convergence of the estimate. This procedure is nu-
merically much more difficult than using the beta
approximation, however. Finally, further qualitative
assurance of the appropriateness of the beta approxi-
mation may be gained by visually comparing plots of
G,(r) and G(r), as well as selected quantiles of both
distributions.

2.4 Step 4: Weight and Combine the Native and
Induced Subsystem Prior Beta Distributions

The ith subsystem native S(s; + 1, n{ — 57 + 1) and
induced B(q,, b) priors may be averaged to produce a
combined single beta prior by means of a natural-
conjugate (NC) method proposed by Winkler (1968).
In this method, Bayes’s theorem is used to determine
a combined prior by interpreting the native beta
prior as being proportional to a binomial likelihood.
If s2 and n? are nonnegative integers, then the native
prior is interpreted as being proportional to the like-
lihood given s? + 1 prior successes in a7 + 2 prior
tests. Weighting the native and induced priors, and
combining them through Bayes’s theorem, yields the
ith subsystem combined prior B(w; a; + w;,5{ + w;,,
wi by + wianf — wiy st + w;y) distribution. If the beta
approximation is unsatisfactory in Step 3, then a
weighted average of the native beta-induced and
exact-induced subsystem priors is suggested as a
means for obtaining a combined prior distribution.

There is a twofold problem in determining the
weights w;, and w;,. Not only must the relative
weights for both the native and induced priors be
selected, but the sum of the weights must also be
determined, as there is no mathematical restriction
on this sum. Winkler (1968) argued that 1 < w;, +
w,, < 2. Furthermore, the sum should approach 2
when the native-prior and induced-prior information
may be considered to be reasonably independent and
should approach ! when the prior information ap-
pears to be dependent (in the sense that the two
priors are based at least in part on the same infor-
mation). The latter condition is probably more realis-
tic here than the former condition, because often in
practice the same system analyst (or group of ana-
lysts) is asked to assess both the ith subsystem native
beta prior and the component beta priors in the ith
subsystem. Unless the two priors really do embody
somewhat independent sets of information, setting
the sum much greater than | may result in spurious
variance reduction,

If it becomes difficult for the analyst to uniquely
identify the weights to be used, then the sensitivity of
the final system-reliability distribution to different
weight choices can be examined. If this distribution is
insensitive to these choices, then it does not matter;
otherwise, either an effective range of final reliability
estimates can be reported or additional effort can be
applied to identify the unique choice to be con-
sidered.

We chose the NC method here because the com-
bined prior is always a beta distribution (this is a
requirement for Stage 2 of the Bayesian procedure).
Although there exist many other averaging methods
(such as taking a weighted average of the two priors),
the use of these methods does not guarantee a beta-
combined prior.

Moreover, if there is no native prior data on the
ith subsystem, then we set w;; =1 and w;; =0 and
the combined prior becomes the induced prior. On
the other hand, a system analysis can be forced to
begin at the subsystem level by ignoring the induced
subsystem prior (w;, =0, w;; =1). Actual per-
formance of the NC method will be illustrated in
Section 3.

2.5 Step 5: Compute the Subsystem Posterior
Beta Distribution

Combining the binomial test data (s;, n;) and the
combined beta prior using Bayes’s theorem yields the
ith subsystem posterior f(w; a, + w;; 5 + § + W3,
wy b, + wipnd — wip s + ny — 5, + w) distribution.

After the subsystem posterior beta distributions
have been computed for all m subsystems, the sys-
tem-level analysis (Stage 2) proceeds as follows.

2.6 Step 6: Compute the Induced System Prior
Approximate Beta Distribution

The induced prior denmsity g(r) for the overall
system reliability r is the distribution of the product
of m independent beta random variables, in which
the ith variable has the subsystem posterior beta dis-
tribution given in Section 2.5. As in Step 2, we again
approximate the exact distribution of this product
using a beta distribution having the same first two
moments. Thus we compute the approximate in-

‘duced prior density on r, denoted by g,(r), as a B(a, b)

distribution. The parameters a and b are computed
from (3) by replacing M, and ¥, in (4) with M and V,
respectively, where

M lﬂ[ W, a; 4+ Wy St + 5 +.wpy 5)
- Wy @ + Wb+ wiang 4+ n + 2w,

i=1

TECHNOMETRICS, MAY 1888, VOL. 30, NO. 2
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and

V =

i=1

The corresponding approximate induced prior beta
cdf on r is denoted by G,(r).

2.7 Step 7: Examine the Quality of the Beta
Approximation in Step 6

It is difficult to obtain the exact analytical distri-
bution of the product of the m independent subsys-
tem posterior beta distributions, because all of the
respective beta parameters are extremely unlikely to
be nonnegative integers. Because it is easy to gener-
ate beta pseudorandom variates having noninteger
parameters, however, Monte Carlo simulation is rec-
ommended as a way to approximate this exact distri-
bution (in the manner described in Sec. 2.3).. The
simulation-produced induced system prior empirical
distribution function will be denoted by G(r).

We then examine the quality of the beta approxi-
mation to the exact distribution by again computing
the KS two-sided p value as in Step 3. The empirical
cdf for computing this statistic is again based on a
Monte Carlo sample of size 100. As before, the beta-
distribution approximation is considered to be unac-
ceptable if the p value is small. In this case the pro-
cedure could be continued using a nonparametric
density function estimate of the exact induced system
prior instead of the beta approximation. To ensure
good convergence of the density estimate, a large
Monte Carlo sample should be used in computing
the density estimate. As in Step 3, additional qualita-
tive assurance of the beta approximation’s suitability
may be gained by comparing plots of G,(r) and G(r)
as well as selected quantiles of both distributions.

2.8 Step 8: Weight and Combine the Native and
Induced System Prior Beta Distributions

The NC method described in Section 2.4 is again
used to average the native f(s° + 1, n® —s° + 1) and
induced B(a, b} priors to produce a combined system
beta prior. Following the NC procedure, and_con-
straining s° and n° to nonnegative integers, yields the
combined system prior f(w,a + wy5° + w,, w,b +
w,n° — wys° + w,), where w, is the weight of the
induced system prior and w, is the weight applied to
the native prior. As previously discussed, 1 < w, +
w, < 2, and both the sum of the weights and the
individual weights are again chosen based on the dis-
cussion in Section 2.4. This will also be illustrated in
Section 3. If the beta approximation is unsatisfactory
in Step 7, then a weighted average of the native beta
and the nonparametric density function estimate of
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- [ (W@ + Wiy ST + 8 + Wi Xw, 8, + wi, ST + 5, + wi, + 1)
(Wiap + wigby + wianf + ny 4 2w Xw,a, + wip by + wipnf 4+ 2w, + 1)

] - M (6)

the induced system prior is again suggested as a
method for obtaining a combined distribution.

2.9 Step 9: Compute the Final System Posterior
Beta Distribution

Combining the binomial system test data (s, n) and
the combined system beta prior using Bayes’s theo-
rem yields the final system posterior f(w,a +
wyS + S5+ Wy, wib+won® —ws®+n—s4+w,)
distribution of the system reliability ». Desired infer-
ences about the system reliability are then obtained
from this distribution in the usual way; for example,
the posterior mean is the Bayesian point estimate of r
for a squared-error loss function, whereas the .05 and
.95 quantiles define a 90% Bayesian probability in-
terval estimate for r.

3. EXAMPLE

As indicated in Section 1, the example considered
here concerns the overall reliability of a certain air-
to-air heat-seeking missile system. Table 2 contains
the binomial test and beta prior data for the compo-
nents and subsystems identified in Table 1, as well as
those for the overall system. Some of the data in this
example have been deliberately altered to avoid se-
curity classification problems. Corresponding blanks
indicate that either the prior or the test data (or
both) are missing.

If no prior data exist for a given component, then
some type of noninformative prior must be con-
sidered. For this example we have chosen to use Jef-
freys's prior in Step | for Subsystem 1. On the other
hand, if prior data are missing at the subsystem level
(such as Subsystems 1, 2, and S), then there is no
need to even consider the corresponding native prior,
because no weight will be given to this native prior in
Step 4.

Consider the subsystem-level analysis, Stage 1. The
induced prior approximate distribution for the war-
head reliability, g,(r,), is computed using Equations
(3) and (4) in Step 2 to be a §(10.64, 3.51) distribution
having .05, .5, and .95 quantiles of .54, .76, and .91,
respectively. The KS p value of .81 indicates that this
beta approximation is quite satisfactory.

Because of the lack of native prior data on Subsys-
tem 1, the combined prior is the induced prior distri-
bution; thus w,, = | and w , = 0 in Step 4. Figure 3
gives a plot of the induced prior and corresponding
posterior f(18.64, 3.51) distributions of the warhead
reliability (Step 5). The posterior reflects the increase
in degree of belief resulting from the eight successful
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Table 2. Component, Subsystem, and System Binomial Test and Beta Frior Data for a
Certain Air-to-Air Heat - Seeking Missile Systam

i sy ny sy n, s? n? s, n, s® n° s n

system  system
15 265

1 8 8

11 30 30

1 2 80 80

1 3 38 40

1 4 30 30

1 5 845 846 90 90

1 6 10 10

1 7 29 30

1 8 200 20

1 9 5 5

2 7 8

2 1 398 400 S50 50

2 2 277 300 50 50

2 3 1097 1100 82 100

2 4 653 688 23 25

2 5 2938 300 50 50

2 6 347 350 55 55

3 257 269 191 205

3 1 245 248 129 130

3 2 244 248 130 130

3 3 246 248 129 130

3 4 n 274 128 130

3 8 356 358 130 130

3 6 253 255 247 250

3 7 249 250 129 130

3 8 249 250 243 250

3 9 340 350 330 330

4 55 66

4 1 796 800

4 2 795 800

4 3 793 800

4 4 790 800

4 5 385 400

5

5 1 1025 1,320

5 2 1,086 1,090

5 3 1,083 1,080

warhead tests. The .05, .5, and .95 quantiles of the
posterior distribution are .70, .85, and .95, respec-
tively.

Now consider the missile, Subsystem 2. The in-
duced prior approximate distribution for the missile
reliability is a f(405.11, 67.68) distribution. A corre-
sponding KS p value of .20 indicates that the ap-
proximation is again satisfactory and the .05, .5, and
.95 quantiles are .83, .86, and .88, respectively.

The combined prior in Step 4 is again the induced
prior beta distribution. Because of this strong prior
and compatible test data, the seven successful missile
tests in eight trials have no noticeable effect on the
degree of belief regarding the missile reliability.
Figure 4 gives a plot of the induced prior and poste-
rior f(412.11, 68.68) distributions for the missile reli-
ability. The two distributions essentially overlay each
other.

For the reliability of Subsystem 3, the aircraft, the
induced prior distribution is computed in Step 2 to
be a f(419.46, 43.03) distribution having an associ-
ated KS p value of .70. Now let us compute the
combined prior in Step 4. The native prior data for
the aircraft is assumed to be nonindependent of the
aircraft component prior data, as the same system
analyst supplied both sets of prior data. Accordingly,
the sum of the weights was taken to be 1. Note that
the native prior f(258, 13) distribution reflects a pre-
cise state of increased optimism regarding the aircraft
reliability compared with the corresponding induced
prior. Neither prior was believed to be superior and
thus equal weights were chosen in Step 4; however,
the sensitivity. of the results to this choice will be
considered later. This choice yielded a f(338.73,
28.01) combined prior, which is plotted in Figure 5
along with the induced and native priors. Note that

TECHNOMETRICS, MAY 1888, VOL. 30, NO. 2
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Figure 3. The Prior and Posterior Bata Warhead Reliability Distributions.

the combined prior is located nearly midway between
the two priors, while having only a slightly larger
spread. The combined prior and corresponding pos-
terior §(529.73, 42.01) aircraft-reliability distributions
are plotted in Figure 6. The .05, .5, and .95 prior and
posterior quantiles are .90, .92, .95, and .91, .93, .94,
respectively. The effect of the 191 successes of 205

aircraft tests is only slight because of the compati-
bility of the test and prior data.

30.0

The induced prior approximate distribution for the
C3I subsystem reliability is computed to be a
B(500.88, 40.75) distribution having an associated p
value of .99. The .05, .5, and .95 quantiles are .91, .93,
and .94, respectively. The native B(56, 12) prior distri-
bution for the C*I subsystem reliability is more dif-
fuse and is shifted to the left of the induced prior. The
induced and native priors are plotted in Figure 7
along with the combined prior using the weights
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Figure 4. The Prior and Posterior Bata Missile Reliability Distributions.
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Figure 5. The Induced, Native, and Combined Prior Aircraft Raliability Distributions.

w,, =.25 and w,, =.75. Although these were the
weights identified by the system analyst, the sensitivi-
ty of the final system-reliability distribution to this
choice will be subsequently considered.

Because there have been no independent binomial
tests of the C*I subsystem, the posterior C3I reliabil-
ity distribution reduces to the combined £(167.22,
19.19) prior in Figure 7. The .05, .5, and .95 quantiles

are .86, .90, and .93, respectively.
The induced prior approximate distribution for the

reliability of the logistics/maintenance subsystem is a
B£(1,021.76, 109.03) distribution with a KS p value of
.40. The .05, .5, and .95 quantiles are .89, .90, and .92,
respectively. The combined prior distribution is the
induced prior approximate beta distribution, and be-
cause there have been no independent binomial
subsystem tests of this subsystem, the final subsystem
posterior reliability distribution is the same beta dis-

tribution.
Now consider the system-level analysis, Stage 2. At
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Figure 6. The Prior and Posterior Beta Aircraft Reliability Distributions.
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Figure 7. The Induced, Native, and Combined Prior C*| Reliability Distributions.

Step 6, the induced prior approximate system reli-
ability distribution, g,(r), is computed, using Equa-
tions (3), (5), and (6), to be a f(48.52, 41.06) distri-
bution having an associated p value of .78. The .05,
.5, and .95 quantiles of this distribution are .45, .54,
and .63, respectively.

The native f(116, 151) prior distribution for the
overall system reliability is less diffuse and is shifted
somewhat to the left of the induced prior. Neither
prior was believed to be superior and thus w, =

w, = .5 was chosen in Step 8. This yielded a f(82.26,
96.03) combined prior, which is plotted in Figure 8
along with the induced and native system priors. Be-
cause there have been no overall system tests, the
final posterior system reliability distribution in Step 9
is again a B(82.26, 96.03) distribution. This narrow
posterior is largely because of the strong prior data
used in the analysis; weaker prior data would result
in a more diffuse posterior.

A common point estimate of the overall reliability
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Figure 8. The Induced, Native, and Combined Prior System Reliability Distributions.

TECHNOMETRICS, MAY 1988, VOL. 30, NO. 2



BAYESIAN RELIABILITY OF A SERIES SYSTEM

Table 3. Sensitivity of the Posterior System Reliability Distribution to

Selected Choices of Weights Summing to 1

Quantiles
Posterior

Case Wi, wy, w, distribution .06 .50 .85
1 5 .25 5 f(82.26, 96.03) A0 46 .52
2 0 .25 5 p(81.76, 94.83) .40 46 52
3 1 .25 5 p(82.63, 96.94) .40 46 .52
4 .5 (o 5 B(78.95, 96.68) 39 45 51
5 5 1 5 f(82.60, 94.95) .40 47 .53
6 —_ - 0 p(118, 151) .38 .43 .48
7 5 .25 1 B(48.52, 41.06) 45 .54 .63
8 5 0 1 B(41.90, 42.36) 41 .50 .59
9 .5 1 1 B(49.19, 38.91) .47 .56 64
10 0 .25 1 B(47.52, 38.66) .46 .55 .64
11 1 .25 1 B5(49.27, 42.88) .45 .53 62
12 0 0 5 B5(78.59, 95.88) .39 45 51
13 1 0 5 B(79.22, 97.61) .39 45 .51
14 0 1 5 p(82.06, 93.76) 41 47 .53
15 1. 1 .5 B(83.00, 95.86) .40 .48 53
16 1 1 1 B(50.01, 40.72) 47 .55 64
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of this missile system is the posterior mean of .46, but
a two-sided symmetric 90% Bayesian probability in-
terval estimate for the unknown reliability is (.40,
.52). Because of the near symmetry of the posterior
distribution, the posterior median is also .46.

Suppose now that, instead of Jeffreys’s B(.5, .5)
warhead component priors, we had used f(1, 1) (uni-
form) priors for components 1-4 and 6-9. The poste-
rior warhead reliability distribution now becomes
B(18.08, 6.19), having .05, .5, and .95 quantiles of .59,
.75, and .88. These estimates are significantly less op-
timistic than those (.70, .85, .95) obtained using Jef-
freys’s priors, as (.5, .5) is more diffuse than f(1, 1),
and this has an effect when few (if any) failures occur
on components in series. The overall effect of the (1,
1) priors on the final posterior system-reliability.dis-
tribution is only slight, however, because of the
strong prior data in the remaining subsystems. The
B(1, 1) priors yield a final B(75.39, 94.38) system-
reliability distribution, having .05, .5, and .95 quan-
tiles of .38, .44, and .51, respectively. For the preced-
ing reason, we recommend the use of Jeffreys’s nonin-
formative priors when few (if any) failures have been
observed.

Because the choice of weights may be somewhat
arbitrary, the sensitivity of the results to these choices
is important. Table 3 gives the final posterior system-
reliability distribution for several choices of weights,
each, respectively, summing to 1. In Case 6, all of the
weight is placed on the native system prior, thus w;,
and w,, are irrelevant. The resulting posterior is not
sensitive to the value of wy, when either w,; = .25 or
w,, =0 and w, =.5 (Cases 1, 2, and 3 and Cases 4,
12, and 13). The reason for this is the closeness of the
induced and native priors as seen in Figure 5. The

final posterior is only slightly sensitive to w,;, when
either w,, =.5 or wy, =0 and w, =.5 (Cases. |, 4,
and 5 and Cases 2, 12, and 14). The results are more
sensitive to w,, when w, =1 (Cases 7, 8, and 9) be-
cause all of the weight is given to the induced-system
prior. Finally, as seen in Figure 8, the system poste-
rior is quite sensitive to w, when w;, =.5and w,, =
.25 (Cases 1, 6, and 7), reflecting the difference in
degree of belief embodied in the induced-system and
native-system priors.

4. DISCUSSION

A Bayesian procedure for determining the reliabil-
ity of a series system composed of binomial subsys-
tems and components has been developed. The pro-
cedure uses both test and prior data at each of three
levels in the system. Although the procedure is a
Bayesian one based on subjective degree of belief (in
the form of beta priors), an analysis using only bino-
mial test data at the same three levels may also be
performed. Noninformative component priors would
be assigned, and zero weight would be given to the
nonexistent native subsystem priors and native
system prior in the analysis. The resulting posterior
system distribution could then be used to provide
reliability estimates that depend almost exclusively
on the test results. Some degree of subjectivity still
rémains, however, as a result of the initial choice of
noninformative component priors. Thus, in general,
the final estimates will not necessarily agree with
those produced by purely classical (non-Bayesian)
methods.

To illustrate this, consider the missile subsystem in
Table 1. Suppose now that we ignore the prior com-
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ponent data and use only the component and subsys-
tem test results. The Lindstrom—Madden classical
method (Lloyd and Lipow 1962) is perhaps the best-
known approximate method for computing lower
confidence limits on a series system of independent
binomial components. Using this method, the missile
component test data in Table 2 is equivalent to 22.77
successes in 25 tests. Thus, using only the component
data, the maximum likelihood (ML) point estimate
and 95% lower confidence bound on the missile reli-
ability are 91 and .76, respectively. Combining this
component system equivalent data with the actual
missile test results yields an overall point estimate
and 95% lower confidence bound on the missile reli-
ability of .90 and .77, respectively.

Martz and Duran (1985) presented a Bayesian
method based on Jeffreys’s noninformative priors
that produced lower probability bounds that were in
good agreement with the Lindstrom—Madden lower
confidence bounds. Consider, therefore, the Bayesian
method presented here using A(.5, .5) component
priors. The p value for the induced missile subsystem
prior approximate beta distribution in Step 3 is .99,
indicating an excellent quality approximation. From
Step 2 the induced-prior distribution on the missile
reliability is a §(28.85, 4.82) distribution, with a mean
of .86 and a fifth percentile of .75. This lower Bayes-
ian probability bound agrees quite well with the cor-
responding Lindstrom-Madden bound of .76. The
point estimates differ primarily because of the opti-
mistic nature of the ML estimator when no failures
occur (as for components 1, 2, 5, and 6). These four
components are effectively ignored in the ML point-
estimate calculations, thus yielding an optimistic
missile-reliability estimate. In contrast the Bayesian
compomnent point estimates are less optimistic for
these four components, resulting in a less optimistic
missile-reliability estimate. Including the missile test
data in Step S5, the final posterior §(35.85, 5.82) distri-
bution on missile reliability has a mean of .86 and a
fifth percentile of .76. Again this lower bound is close
to the corresponding classical bound of .77.

Although only three levels have been considered
here, the extension to more than three levels is
straightforward: Steps 2-5 in Figure 2 are simply
repeated for each additional level in the system. Thus
a series system consisting of identifiable hardware or
functional entities such as subcomponent, compo-
nent, subsystem, system, supersystem, and so forth,
for which either prior or test data have been ob-
tained, can be analyzed using this procedure.

Finally, in all of the practical problems we have
considered, the beta approximations in this pro-
cedure have been satisfactory in every case. Thomp-
son and Haynes (1980) also reported success with
this approximation in their examples.
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