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Information Integration Technology

Mark McNulty, Sallie Keller-McNulty, and Alyson Wilson
Los Alamos Nationd Laboratory, Statistical Sciences

1. Introduction

Information Integration Technology (11 T) isacombination of processes, methods, and tools
for collecting, organizing, and andyzing diverse information and for utilizing that information to
guide optima decison making. The diversity of the information that can be focused on agiven
problem isits defining characteristic of 11T. Effective use of diverse information is a prerequisite
for optima decison making. Optima decisons require information about many different things
information about the structure and behavior of the system the decision-maker is contralling,
information about the congtraints and options that the decision-maker faces, information about
the decison-maker's preferences. Optimal decisions aso require information from many
different sources: information from theoreticd modds, information from test deta, information
from the performance of Smilar sysems, information from computer smulations, and
information from dl the individuas (scientists, engineers, fied personnd, managers, and the
decison-makers themselves) who are sakeholders in the decision making process.

The desire to support decison making at any point in the life of a project or processwas a
driving force behind the devdopment of 1IT. Fulfilling this desire resulted in severd important
featuresin the technology. Firg, the technology can function with limited information. Thisis
important because crucia decisons must often be made precisely when hard data are most
scarce. |IT utilizesdl avallable information, even if the amount is small, to guide decisons
whenever they must be made. Because information is often scarce, I1T gtrivesto employ
information that may be ignored by other decisionsupport analyses. For example, the
technology utilizes information from similar sysems. Expert opinion is another important
source of information that can be exploited when hard data are hard to come by. Expert opinion
is used to some extent during al decison-making processes.  However, it istypicaly not
formally dicited and recorded asdata. 1T formalizes dicitation where it has been used in the
pat, introduces dicitation where it has not previoudy been employed, and explicitly makes use
of the resulting information. Findly, uncertainty quantification is never more important than
when decisions are to be based upon limited information. 11T treets uncertainty quantification as
an integrd, critica component of the decision-making process.

Another important feature of 11T is the dynamic nature of the technology, which is required
to support continuous and comprehensive evauation and decison making The technology is
sructured so that new information can be quickly incorporated to produce complete model
updates. The dynamics alow for changesin process design and decision objectives, aswell as
the more typicad dataarisng from additiona tests and experiments.

[IT have been successfully gpplied in industrid environments and with the nuclear wespons
program a Los Alamos National Laboratory. Most of these gpplications have focused on
reliability and performance esimation for problems where traditiond Statistical approaches that
are grounded in the estimation of metrics based principaly on test data were not sufficient to
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guide the decison making, e.g., nuclear wegpons certification of aging missiles without full

system tests. These tradition methods ignore the vast amount of knowledge and intuition in the
communities that have developed (or are developing) the systems under study. Also, the
traditionad methods are not amenable to the integration of information from computer models or
other data on smilar systems, nor do the flexible adapt to system changes as occurs with aging or
re-design.

The driving force behind the development of 11T has been to overcome the problems stated
above. Severd gpplications of I T have led to anumber of practical consderationsthat are
critical for the successful implementation of the technology. Oneis that the generic processes,
methods, and tools that make up the technology must be couched in the nomenclature of the
specific organization and communities being served. Interactions with engineers must be in the
terms of an engineer, interactions with managers must be in the terms of amanager. Attemptsto
interact using datistica or decision-theoretic jargon are destined to fail. Another consideration
isthat state-of-the art computationaly intensive statistical methods must be brought to bear on
the problem, e.g., Monte Carlo methods. Findly, since these problems are about decison
meaking and not Smply modeing, highly collaborative multidisciplinary teams of individuas
must come together in the development of the problem solutions.

2. 1T Framework

Themgor dements of the lIT framework areillustrated in Figure 1. The connections
between the figure e ements emphasize the recursive nature of the technology. New information
about any particular eement generates updates of dl the other eements. This continuous
updating makes the technology highly dynamic, alowing decisions based upon the best and most
complete information to be made at any point in time.

Figure 1. [IT Framework
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The bottom element of Figure 1 represents an understanding that al stakeholdersin the
decisgon process have important perspectives on the problem that must be integrated into the 1T
process. Groups of stakeholderswho think in smilar ways are often caled * communities of
practice’”. Within nuclear weapons the communities of practice include physicists, who approach
problems by trying to understand the physical processes involved; weapons designers, who are
more concerned with harnessing the physica processes; engineers, who think about problemsin
terms of interacting components; statisticians, who consider issues of uncertainty; computer
scientists, who want to understand how complex computer codes work; managers, who work to
coordinate activities, and politicians, who care about the policy implications of the science. Each
of these communities approaches the problem from a different viewpoint, and each representsiits
information in adifferent way. Understanding the various communities of practice dlows them
to be gpproached on their own turf, rather than forcing them onto the unfamiliar playing fieds of
the Satistician or decison scientist. Experience has demondirated that the former gpproach
makes the technology far more likely to succeed. 11T grivesto understand dl of the
communities of practice within the organization being served. The bottom eement of Figure 1
a0 emphasizes the need for a broad understanding of al the disciplines that may be caled upon
to help solve the organization's problems.

The remaining five dementsin Figure 1 represent the more technical agpects of the
technology. The development of these eementsis not a sequentia process, they al progress
smultaneoudy. However, the development is most efficient if the top eement, the definition of
Decison Objectives, is at the front of the pack. This step is frequently overlooked by analystsin
the rush to collect, mode, and andyze data, a natura inclination because andydts are well-
trained in modeling and data andyss, and not so well-trained in the complexities of
understanding decision contexts. However, the definition of the decision objectives forms the
foundation upon which the remainder of the lI T processis built. The decison objectives guide
the kind of models that should be built, the kind of information that should be gathered, and the
kinds of anayses that should be performed.

The Andyss Strategy and Problem Representation is extremely important. Before any
information is collected, it must be determined how this information will be andyzed and
integrated, and how the results will bring better resolution to the decison objectives. These
determinations should drive the requirements regarding what is collected, what computer models
to build, what experimentsto run, etc.

The collection of data, information, and knowledge is represented in the Information
element. Notice that this information includes more that just “data’ in its traditiond, narrow
sense. All decisions incorporate more than just data: they dso include the information and
knowledge required to understand the problem, structure the representations, find data sources,
and sdlect gppropriate models. Even “data’ in its narrower sense is quite broad, including
opinions dicited from experts, outputs from computer codes, etc.

The Information Integration Methods and Tools dement is used to tie dl of the decison
objectives, community representations, and information together. If these methods are effective,
they lead to the Inference dement in which the quantitative results required to make decisons
are actualy produced.
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3. Organization of Information

Theway in which information is organized has amgor influence on how that
information isused. Because IIT employs such awide array of information, the proper
organization of information is critical for the successful implementation of the technology. This
section provides details on how information is organized within I1T.

Within [IT information is grouped into two broad classes, information that is used to define
gtructure and information that is used to provide content. Structure is a complete quditative
description of the problem and problem solution. Because the emphasis of 11T ison decision
making, the decision maker isthe proper sarting point for the collection of structura
information. The decision objectives are defined by the answers to questions such as What are
the objectives of the decision maker? What metrics are meaningful? What options are available?
What congraints do they face? What andysis capabilities would they like? Given adescription
of decison objectives, information about the processes that must be modeled is gathered next.
Thisinformation emphasizes complete descriptions of process components and their
rdaionships. Defining structure requires consderable information about information. What
data are available? Who knowswhat? Are there relevant data on related processes? What isthe
nomenclature of the different communities of practice? Findly, dl thisinformation is used to
identify the best system representation and the kinds of analyses that are going to be performed.
Information about structure can be qualitative in nature, driven by experience and expertise, or it
can be very concrete, driven by theory and the physica laws of nature.

Content, the second broad information classification, provides the quantification of the
dructure. For example, content includes the mathematical representation of decison maker's
objective function, the actual process representation, parameter estimates, probability
digributions, etc. There are three broad types of information used to create content. Thefirst is
sample data, which are observations taken on the relevant processes. These observations may
arise from experimentation, tests, or be purely observationd. The second type of information
used to create content are data taken from similar systems. These are observations that are taken
on processes that are related to, yet distinctly different from, the processes defined in the
sructure. Examples of smilar systems are prototypes, modified processes, and processes
developed by the same design team. Also included as Smilar systems are mathematica and
computer modds. The third type of information used to produce content is expert opinion,
produced through dicitation. Elicited information pertaining to content will be called
judgement.

Because the use of expert opinion as information may be nove to some, a brief introduction
to thisimportant source of information is provided. Individuas with backgroundsin relevant
subject matter and qudified to answer questions are experts and their informed opinions are
obtained through dicitation. Quantitative expert opinion can be consdered to be data, and like
data from other sources, expert opinion must be handled with certain consderations. Expert
judgment is affected by how it is gathered. Elicitation methods must take advantage of the body
of knowledge on human cognition and motivation and include procedures for aiding memory and
countering effects arising from the phrasing of the questions, response modes, the influence of
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the dicitor, and the expert’ s personal agenda. Expert judgment has uncertainty, which can be
characterized and subsequently analyzed. Andysts should be avare of experts naturd tendency
to underestimate uncertainty. Expert judgment can be conditioned on various factorsincluding
the phrasing of the question, the information the experts considered, the experts methods of
solving the problem, and the experts assumptions. A forma structured approach to icitation
provides anaysts a better handle on conditioning effects. A complete description of elicitation
details and techniquesis avalablein Meyer and Booker (1991) and Meyer et a. (2001).

An important part of the organization of the information includes tracking dl the diverse
sources being brought to bear on the problem and the dynamic changesinthe Il T processes. An
effective way to do thisisto create aknowledge system. A knowledge system is a browser-
accessed eectronic repository that has been customized to the cognition and culture of the
technica communitiesinvolved in the decision process. The knowledge system brings together
their data and knowledge in structured quantitetive ways. In addition, these systems integrate all
of the data, knowledge, and information with the relevant satistical methods and tools. The
purpose isto provide distributed communities with eectronic access to information, methods,
and tools they seek to perform their problem solving/decison making. As aresult, knowledge
system sarvesto rapidly evolve the knowledge in science and technology environments.

4. System Representation

An important component of 1T is the representation of the system under study. This
representation must be flexible to accommodate change in the underlying processes and
understandable by dl of the communities of practice. The representation must include dl the
factorsthat are of interest to the decision maker, including the ways in which the decison maker
can control and influence the system and metrics for the decison maker's objectives. Findly, the
representation must be accurate. 1t must correctly portray the system and the ways in which the
system components interact. This section presents an introduction to some of many different
ways of representing a given system. For amore complete discussion see Wilson and Kdller-
McNulty(2000).

The genera forms of the representations used by the information integration technologies
have three parts. icons/pictures/diagrams, rules/statements, and abstract mathemeatics (Paton et al.
1994). Rules and statements are used when we have observable phenomenathat have been
characterized by physicd laws or gatistical relationships, aostract mathematics capture physical
laws about unobservable phenomena. There are four primary purposes of these representations:
capture al of the factors that affect the measures of performance; outline the components and
subsystems of the larger system and how they interact; identify the information that feedsinto
the estimation of the metrics, and specify the methods for combining and aggregating the
information and quantifying uncertainty about the metrics.

There are many types of diagrams that can be used to accomplish the four primary purposes of
diagramming and representing the “system” under study. However, they share common festures.
The basic components of the diagrams are “boxes,” which represent where data, information, and
knowledge can be collected, and arcs/arrows/lines, which represent the information flow

between boxes. In atempting to represent a system, many different diagrams are often drawn.
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Thismay be because the members of a multi-disciplinary team draw different diagramsto
represent the different ways they think about the problem, or it may be because different parts of
the system are better or more easily represented in different ways. In the integration process, it is
condructive to combine these different representations into a single diagram, not forcing it into
the structure of a specific diagram type, but integrating the different representationsinto a
complex diagram that captures the unique fegtures, rdationships, and informeation flows in the
system under study.

5. Statistical Methods

There are many types of datathat can be used to populate the boxes/nodes in the system
representation: expert judgment, hitorica test data, data from smilar or relevant systems, design
specifications, computer sSmulation mode outputs, physica test data. Each type of dataand
information has natural waysthat it can be represented (Keler-McNulty and McNulty 2000).
These include graphs (e.g. histograms, boxplots, and scatterplots), tables, mathematical models,
probability distribution functions, and fuzzy digtributions and membership functions. For
mathemétically rigorous information integration, al of the sysem and data representations must
be collected and transformed into probability distributions, probabilistic dependency
relaionships, and gatistica models. These modds and distributions may not be parametric, but
they must be in the language of didtributions, dependencies, correlations, conditiona
independencies, and gatisticd models of various forms. The statistical methods described in this
section condtitute a primer on how to integrate the diverse information sources relevant to a box
or anodein the system representation.

Suppose that the operation of one component (one box) in asystem is represented by a
vaiadleY. Y might denote whether the component is functioning (y = 1) or failed (y = 0), the
lifetime of the component, or the output of the component (in units of horsepower, valts,
floating- point operations per second, etc.). Whileit is the performance of the entire system that
isof interest, this can only be derived by understanding the behavior of each component. This
section examines the use of diverse information to describe the behavior of Y. Three specific
sources of information are considered: sample data, expert opinion, and data arisng from smilar
components. While only the amplest cases are consdered and many smplifying assumptions
are made for clarity of exposition, the methods described below form the basis of the I T
satistical processes.

5.1 Classical Methods

It will be assumed that Y is random variable so that knowledge of the probability density
function (pdf) of Y completely describes its behavior. Using stlandard notation the pdf of Y is
written f(y;q), where g is assumed to be a scdar parameter for smplicity.

In order to proceed here a functional form of f(y;q) will be specified®. In some situationsthe
nature of the random variable suggests a natura choice for f(y;q). There are awide range of
probability distributions that have been devel oped to describe random variables in specific

1 In practice, nonparametric and empirical representations of f(y;q) are allowed.

DRAFT MANUSCRIPT
October 2000



Stuations. If Y can beinterpreted as the number of successesin agiven number of trids, a
binomid pdf (q° p) may be gppropriate. If Y measurestime until failure of some component,
an exponentid pdf (q° | ) would merit condderation. When there is no natura candidate
digtribution, the examination of sample data may suggest aform, as may discussons with experts
familiar with the behavior of the random varigble. While the choice of function formisan
interesting and important topic, extended discussion will be deferred so that the paper may focus

on theissue of primary interest, which is using diverse information to learn about .

The classic source of information is a sample of observations on the random variable of
interest, Y. A sample of n observationson'Y isrepresented by {ya,...,yn}. The observations
may occur in a controlled, experimental setting (i.e. testing) or under more uncontrolled,
subjective conditions (i.e. in thefield). Examples of sample data are fracture counts from a
component being tested or consumer satisfaction rankings. The problem of andyzing sample
data has historicaly dominated statigtical thinking, and a plethora of methods for estimating q
given asample have been developed. Two of the more common estimation Strategies are
maximum likelihood estimation and method of moments (Mood, Grayhill, and Boes 1974).
Whatever srategy is pursued, the end result will be an estimate of g based upon the sample,
denoted g, and an (estimated) variance of the etimate, Var(qg). 1t will be assumed that g is

an unbiased estimator so that E(qg )= q.

Experts are another source of information about g, and this information can be acquired
through dicitation. One god of the dicitation isto obtain an estimate of q based upon the
expert'sknowledge. This estimate will be denoted g, (EJstanding for "expert judgement").
Expert dicitation will generaly focus on features thet define the pdf of Y rather than on the
random varigble itself?>. Becauseit isan esimate of q that we seek, it is natural to first consider
extracting the expert's knowledge in terms of that parameter. Thisismost likely to be fruitful
when the parameter q has ared meaning for the expert.  For example, 1/1 in the exponentid
digtribution may be interpreted as mean lifetime, and p in the binomid digtribution may be
interpreted as the probability of success. In these cases, the expert may be comfortable providing
anestimate of | or p such as"| believe the meen lifetimeis 10 hous' (q.,° I, =0.10) or "l

believe the component will work 70% of thetime (g, © pg, = 0.70). Thedicitationsare rarely

this smple, and they may require experts to study documents, conduct experiments, etc. before
an answer is provided.

In other cases the expert may not relate to the parameter g. For example, if Y hasat-
digribution then q is the degrees-of-freedom parameter k. Degrees-of-freedom probably means
little to the non-gatistician, and attempting to dicit information about it will likely result in
frugtration for al concerned. When the dicitation cannot proceed in terms of q directly, other
parameters, from which g may be inferred, may be investigated. The elicitation of percentilesis
an important strategy, and may be approached from severd angles. The expert may be willing to
provide arange of likely Y vaues ("I an quite sure’ Y will beintherange[-2, 2]"). Further

2 Animportant exception iswhen y depends upon some other variable x so that the pdf of y isf(y;x,q). For example
measured crack length in aseal, y, depends upon temperature, X. In this case one may elicit information about the
value of y that the expert expects for different values of x.)
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discussions will focus on what "quite sure’ meansto the expert. Are[-2, 2] the 10th and 90th
percentiles or are they the 1st and 99th percentiles? Once the percentiles have been dicited they
can be transformed into an estimate of q; if [-2, 2] the 10th and 90th percentiles of at-
digtribution, then q.,= kg, =1.76.

Information about percentiles can be derived in other ways (e.g. consderation of log-odds
ratios), and if the expert's knowledge or disposition precludes providing quantitative estimates,
tools derived from fuzzy control theory (Smith et d., 1998) can be exploited. For example, if Y
isthe crack length in a sedl, which depends upon operating temperature, the expert may share
knowledge in the form of rules such as"If the temperature is too hot, the cracks will be so long
thet the sed will fall." These rules can be quantified usng membership functions thet capture
the experts beliefs about the relationship between crack length and temperature..

Discussion of dl the possible methods for diciting an estimate of q is beyond the scope of
this paper. Elicitation is aforma process, and one of the keysto successisto couch the
icitation in terms the expert is comfortable with and then derive what is Setigtically needed.
Forcing the expert to respond to questions heavy with statistical jargon isarecipe for disaster.
However, whatever form the dlicitation takes, the find result isan estimate, g, that isbased
upon the expert's knowledge. It will be assumed that g, isaso an unbiased estimator of g.

In addition to the expert's best estimate of q, a properly conducted dlicitation will dso
produce information about the expert's confidence in that estimate. The expert may have ahigh
leve of confidence in their estimate or they may be very uncertain. Just as the expert’s beliefs
about g were obtained through dicitation, so can the expert’ s beliefs about their confidence. In
redity, the two dicitations will generdly proceed smultaneously. Obtaining informetion from
the expert about their confidence can become quite complicated, and emphasizes even more the
need for careful congtruction of the dicitation tools. In addition, the data andyst may have other
information concerning the quality of the expert’s estimate that can be factored into the
confidence measure. The information concerning confidencein g, may be quantifiedin a
number of ways (e.g. tail percentiles of apdf of q,). It will be assumed here that confidenceis

measured by avariance of q,, Var(qg, ), consructed from the expert's and andyst's beliefs. The

interpretation of this variance is the usud one: the probability thet the g, + 2,/Var(Qg;) contains
thetrueqisat least 0.75 (using Chebyshev's inequdity, see Higgins and Keller-McNulty 1995).

Similar components are the third source of information that will be addressed here. A
amilar component is a process that exhibits commondity with the process that generatesthe Y
random variable, yet is diginctly different from the Y-generating process. One exampleisa
computer model of the Y-process. Another is a prototype created during the devel opment of the
Y-process. Another would be a different product created by the same design team responsible
for the product underlying Y.

In order to make use of information arising from a smilar component to learn about g, the
commondlity between the two processes must be quantified. In order to accomplish this, let the
smilar component generate arandom variable x that has a pdf f(x;d). It will be assumed here
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that the source of commondity between the two components is a relationship between the Y-
parameter g and the x-parameter d. In particular, it is assumed that g and d are independent,
identically distributed random variables®. The upshot of this assumption isthat the parameter
differencee = g - d isarandom variable with mean 0 and variance s 2. The parameter s 2
measures the degree of commonality between the components. If the components are very
samilar we will expect g and d to be very close, on average, which is equivaent to smal vaue of
s2e If the commondlity iswesk, we will not be surprised if g and d are quite different, which is
reflected in alarge s %

Given knowledge of 52, asample{xa,...,x.} from the similar component can be used to
learn about g. It isgenerdly possble to write the probability dendty function of the smilar
component data as f(xi,...,X| q , S %) and then apply one of the usua sample estimation
techniques (e.g. maximum likelihood) to estimate q. However, asmpler method isthe
following. Usethe sample{xa,...,x} to esimate the Smilar component parameter d in one of
the usua ways, giving an esimate d.. and (estimated) variance Var(dy. ). Assumethat d. is
an unbiased estimator of d. Now, viewing g and d as random variables, dg..isan unbiased
predictor of g because E(q) = E(d) (because g and d areidenticaly distributed). Consequently,
the sSimilar component parameter estimate is used as the component esimate, 4. = de.. This
makes sense, because we have assumed that the components are dike, but we have made no
assumptions about whether we expect g > d or q < d , dthough such an assumption could be
incorporated into the analyss. The fact that we are using data from a different component is
reflected in the variance of the q estimate’, whichisVar(qe. ) = Var(dg. ) +s% The greater the
disparity between the components, the grester is s 2, and the lessis the confidence placed in dsc
asan edimate of q.

The key variable that admits the use of information from a.similar component is s % which
isinversdy related to the degree of amilarity. In some cases this quantity may be estimated.
For example, there may exist a set of separate, Smilar components and parameter variations
within this set may be used to esimate s%.  For mathematical or computer models of the Y-
process, varying input parameters may provide the required information. In other cases, there
will be no direct data concerning s %, in which case estimates can be based upon expert opinion.

The use of information arigng from samples, expert dicitation, and smilar components to
learn about g have been consdered. The ways in which information from these sources may be
integrated is now explored. Suppose we have an estimate from each of the three sources, g,
dg;» dse- Theproblemisto combine these estimatesinto asingle esimate of g. A natural
solution would be to take the Smple average of the three estimates. However, supposeit is
believed that one of the estimates is a more precise than the other two. The more precise
estimate should recelve a greater weight in the average. Thischain of logic is precisgly what
leads to the definition of Best Linear Unbiased Estimator (BLUE) as a criterion for congtructing
an esimator. There are three requirements for an estimator to be BLUE. The estimator must be

3 More generally it is assumed there is some rel ationship between f(y;q) and f(x; d) that must be model ed.
* This variance cal culation requires that the true (not estimated) variance of dsc does not depend upon the d
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Unbiased. The estimator must be a Linear function of the data, i.e. it is congtructed as a
(weighted) average. The requirement that the estimator be Best is, essentidly, that it have the
minimum possible variance (in the class of unbiasad linear estimators). The way that minimum
variance is achieved is by using weights in the average that are inversdly related to precision, and
where precision is measured by variance. For example, assuming the etimates g, qg,, qg.ae
datigtically independent, the BLUE estimator of qisgivenby qg, e = Wsls + We,0gy + Weclse
where the weights ws, Wey, and wg: are well defined functions of Var(qg), Var(qg, ), and

Var(qg. ), where for example wg =—— _ Va(‘jEJ)VarEasc) _ -
Var(gs)Var(qe) + Var(gs)Var(qse) + Var(ge)Var(dsc)

The expression for the BLUE estimator of g given above is based upon the assumption of
independence the different estimates, which is equivaent to independence of the information
used to congruct those estimates. Thisisa critical assumption that must be carefully evauated
inagiven gtudion It is perhaps easiest to describe what is meant by information independence
by considering information dependence and the problems dependence creates. It ishard to
imagine tha the expert's beliefs would not be influenced by thisinformation. Or, suppose two
edimates of g are dicited from two different experts. Spesking loosdly, these two estimates will
be counted as two "pieces of information” when they are integrated under the assumption of
independence. Now, how did the experts acquire their knowledge? Did they receive smilar
training? Where they exposed to the same reports, experiments, presentations, etc? Did they see
the sample data that isaso to be integrated? If so, their estimates contain redundant
information, and this redundancy must be accounted for, otherwise the andyss results will be
biased toward their particular knowledge. It is certainly not correct to give these dependent
estimates the same worth as two independent estimates based upon completely separate
knowledge sets. Dependence of information is very likely to occur, can have amgor impact on
andysisreaults, and can and must be dedt with.

A common gaigtica method of quantifying dependency is through covariance, whichisa
messure of the linear reationship between two random variables. For avector of random
variables dl pairwise covariances can be arranged in a variance-covariance matrix, typicaly
denoted S. Let the estimates from the three information sources be arranged in a vector

q= 'c}s,dEj,aSC]T with variance-covariance matrix S, and let 1 =[1,1,1]". Thenthe BLUE

estimator® of q is q =[1TS'11:'11T slg.
5.2 Bayesian Methods

The methodology outlined in Section 5.1 is from the standpoint of aclassicd Satidician.
The Bayesian perspective (Berger 1985, and Berry 1996) is another point of view that lendsitself
very naturdly to the kinds of problems being consdered here. In the classica framework the
parameter g is afixed congtant, data and beliefs are random, and the god of the andyssisto
esimate . Bayesians make the eminently reasonable point that beliefs and data are what are
known and that it is the unknown ¢ that is the source of uncertainty. Consequently, Bayesans

® This expression is also appropriate if the estimates are uncorrel ated.
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view g as arandom variable, information as fixed, and the god isto estimate the pdf of q. The
result of aBayesan andyssisapdf of theform p(q |y), which isthe probability distribution of

g conditiond upon information y. Rather than esimating q, asisin the classica approach,
Bayesansthink about predicting . Given the pdf p(q |y) there are anumber of natural
predictions that can be computed such as the mean, median, or mode of p(q|y). Both classcd
and Bayesian gpproaches have advantages and disadvantages, discussed in Section 5.3, aswdll as
die-hard supporters and opponents. Our recommendation isto use that method that best suits the
particular problem at hand.

The fundamentd tool of Bayesan andyssis Bayesrule. The garting point for usng
Bayesruleisapdf p(q) that capturesinitid beliefs about g and is known as the prior
digtribution. Let information be the observed random varidble Y with pdf f(y | g) where the
notation reflects the fact that the behavior of Y depends upon a specific, athough unknown,
redization of q. Because the behavior of Y depends upon g, the observed vduey must contain
informeation about g. The problem is how to combine that information with the origind beliefs
expressed in p(q). The solution is given by Baye's rule, which states that the probability
digribution of g givenyisp(q|y) =f(y|q) p(q)/f(y). Thedigribution p(q|y) isknown as
the pogterior distribution, and provides adigtribution of q that incorporates the information
contained iny. Given the observed information, the quantity f(y) is afixed congant, so the result
isoftenwrittenasp( g |y) =kf(y | ) p(q) wherek isthe constant required to makep(q|y) a
vaid pdf (in particular, o that p(qgly) integratesto 1). Baye's ruleisthebassof dmogt al
Bayesan andlyss, and is an incredibly smple rule for incorporating new information. It Smply
says the prior bdief, p(q), ismultiplied by the pdf of the dataf(y | q) to obtain the updated,
posterior digtribution of q.

Two generd types of information were discussed in the previous section. Thefirst was
sample data whose probability distribution depended upon g. Thismay be viewed asindirect
information because the nature of q isinferred by studying the information. The two cases of
indirect data discussed were sample data from the component under study, with pdf f(y|q), and
sample data from a different but related component, with pdf f(x|q, s 2 )°. Theinformation
structures f(y|q) and f(x|q, s %) associated with indirect information are unchanged in Bayesian
andyss. The second generd type of information is direct information about . With direct
information, no inference is required to learn aout q. Direct information was provided by
expert dicitation, which reveaed the expert's beliefs about . In classcd andyss, those beliefs
areinterpreted as estimates of g. In Bayesan andysis those bdiefs are interpreted as estimates
of aprobability digtribution for q.

Because Bayesan andysisis built upon the idea of updating beliefs according to new
information, it is particularly well suited to combining information, which isthe main topic of
this paper. In order to begin aninitid prior digtribution p(q) isrequired. 1n the absence of any
information, there exist probability distributions, known as diffuse priors, that reflect nearly
complete uncertainty about the likely values of g. However, in the current setting thereisa
natura choice for theinitid prior, which isthe pdf derived from the expert dicitation. Let the

® Recall that s.is a parameter that measures the commonality between the components.
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elicited pdf bep(q). Now, the (potentidly very complicated) problem is how to combine the
expert information, contained in p (q), with the sample information, contained in f(y|g). The
graightforward Bayesian solution is a direct application of Bayesrule, giving p(qly) =
kf(ylg)p(qg). Theinformation from the smilar component needs to be incorporated next. The
ampletrick to achieve thisisto use the posterior distribution that results from incorporating the
sample data as the prior digtribution for incorporating the Smilar component data. That is,
information is updated sequentialy, with the posterior for a given update serving as the prior for
the next. The only modification that must be made is that a prior distribution for the smilarity
measure s 2, given by p(s2e), must dso beincluded. Thisillustrates an important part of
Bayesan andysis. prior digributions for al unknown parameters must be specified. Inthis
setting, thisisaprobably agood thing. Thereislikely agreat ded of uncertainty about the
degree of similarity between the components, and the prior distribution p (s 2 dlows this
uncertainty to be explicitly expressed. Combining the data from the three sources using Baye's
rule, and assuming independent information, the final pogterior digtribution of g is

p(q’ Szelxli""xmyl""’yn) =k f(X11""Xn|q1 Sze) f(yl”ynlq) p(q) p(S 29)'

This process generdizes immediately, so thet it is very easy to incorporate new information asiit
becomes available. Figure 2 depicts the process.

Figure 2. Bayesian Estimation

p(aly) = ki(yla) * p(q)

prior
r’e

posterior
~

likelihood
e

Independence of information is of the same concern here as under classca andyss.
Information that is dependent is redundant, and will be given improper weightsif the expresson
given above is used to combine the informetion. 1f the dependence arises among sample data,
the problem can be handled by including the variance- covariance matrix (as described above) in
the probability distributions of the data. If the dependence arises from multiple dicitations, the
nature of the solution isthat a weighted aggregeation of the various beliefs is required (Berger
1985). The best way to congtruct and utilize such weights is an area of active research.
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5.3 Classical or Bayesian?

The previous two sections described classica and Bayesian methods for combining
information. While the two methods may gppear quite digtinct, there are more Smilarities
between them than differences.  Both are reasonable methods of combining informetion, and
should not give wildly differing results. Applying each to a given problem is a good way of
investigating the robustness of the finad conclusons. The reasons for any large differences
should be explored, which may reved particular model senstivities or errorsin formulation or
computation.

Numerous criticisms of the Bayesian methodology can be levied from a philosophica
level. However, an equa number can be charged againgt the classica methodology by those
who are so inclined. The philosophical debate will be lft to others, and this comparison of the
two methodologies will proceed on more technical ground.

The mgjor advantage of the Bayesian gpproach is that it optimally” combines the given
information, even when information is coming from diverse sources. The Bayesan goproach is
aso appeding because it directly accommodates information that comesin the form of beliefs
about the likdly values of g. When sample data on the actual component are scarce, such beliefs
are likely to be amgor source of information. The mgor criticism of the Bayesan approach is
that it can be very difficult to specify prior distributions (Berger 1985), which require functiona
forms aswell as parameter vaues. Because of this difficulty, it is recommended that sengtivity
analyses be performed to determine the dependence of the results on the prior distributions.
Also, Bayesan cdculations can become extremely complicated, even in light of toady's
computing resources.

The particular classical estimation method discussed above was based upon the BLUE
criterion. One advantage of this gpproach isthat it is rdatively digtribution free. That is, an
edimator developed under the BLUE criterion remains the same regardless of the underlying
probability digtributions. The price paid for this generdity isthet dl the information in the
observed datais not utilized, which is a congderable liability. This tradeoff reoccurs throughout
datidicd theory. Assuming the form of underlying probability distributions alows oneto fully
utilize informetion, but creates the risk of subgtantia error if the assumption isincorrect.
Another advantage of classcal estimators methods isthat they are relatively easy to compuite.
Robustness and ease of computation are likely the reasons the majority of applied Satistical
andyses are currently performed under the classca umbrella.

6. System AnalysigDecision Making

Using diverse information to derive the probability distribution of ametric for asngle
system component was discussed in Section 5. The same can be performed for each component
in the system. The sdlected system representation, as described in Section 4, can then be used to
derive the probability digtributions of system-wide metrics. Given the decison maker's
objective function, the vast body of decision theory can then be utilized to guide decisons.

" Optimal in the sense that it minimizes certain loss functions (???ref).
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As an extremely Smple example, consder a system of two components, A and B,
arranged in series. The decison to be made centers on the reliability of the system. Isthe
system rdiability great enough? If not, what should be done? Upgrade A? Upgrade B?
Upgrade them both? Do more testing? In order to answer these questions the behavior of the
system must be described. The functioning of the components and the syssem asawholeis
represented by the smple Bernoulli random variables Ya, Y, and Ysthat take on the value 1
for functioning and O for falled. The probability digtributions of the components are f(ya; pa)
and f(ys;ps), where pa and pg are the probabilities that the components function, and represent
the integration of dl available information about each of the components. The definition of the
system givesthe rdationship Ys=min[Y 4, Yg], which can be used to derive the probability
digribution f(ys pg). In this smple example the result can be derived andyticdly.

Suppose the decision maker needs to be 90% confident that reliability is greater than
0.99. If the pdf of Ys provides this confidence then no further work needs to be done. However,
what if the pdf of Ysdoes not support the requirement? Sensitivity andysis can be used to guide
the next step. Isthe problem lack of information? This can be investigated by reducing the
uncertainties in the pdf's associated with A and B. Isit A or B that needsto be upgraded? This
can be investigated by increasing the reliability of each component and examining the impact on
results.

More complicated, and redistic, problems require the distribution of system-wide metrics
be derived through Monte Carlo methods. For example, consider the systems represented in
Figure 3. In these systems, Monte Carlo smulation is used to roll the component and subsystem
level up to the system levd, or to propagate new information from a higher level down into the
systemto study the drivers of uncertainty. For example Figure 3 shows the integration of two
very different processes, manufacturing and design (Booker et a. 2001) where such propagation
has been done.

7. Conclusions

This paper has provided a short introduction into Information Integration Technology.
While the name refers to the utilization of diverse system information to solve complex decision
problems, it should be clear that constructing such a solution requires a corresponding leve of
integration of the information possessed by a diverse group of datigticians, socid scientists,
natura scientidts, efc. There is no shortage of interesting problems that remain to be solved for a
more complete implementation of I1T.
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Figure 3. Automotive System Representation and Analysis
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