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PAbstract

Evidence theory provides an alternative to probability theory for the representation of epistemic uncertainty in model predictions that
derives from epistemic uncertainty in model inputs, where the descriptor epistemic is used to indicate uncertainty that derives from a lack
of knowledge with respect to the appropriate values to use for various inputs to the model. The potential benefit, and hence appeal, of
evidence theory is that it allows a less restrictive specification of uncertainty than is possible within the axiomatic structure on which
probability theory is based. Unfortunately, the propagation of an evidence theory representation for uncertainty through a model is more
computationally demanding than the propagation of a probabilistic representation for uncertainty, with this difficulty constituting a seri-
ous obstacle to the use of evidence theory in the representation of uncertainty in predictions obtained from computationally intensive
models. This presentation describes and illustrates a sampling-based computational strategy for the representation of epistemic uncer-
tainty in model predictions with evidence theory. Preliminary trials indicate that the presented strategy can be used to propagate uncer-
tainty representations based on evidence theory in analysis situations where naı̈ve sampling-based (i.e., unsophisticated Monte Carlo)
procedures are impracticable due to computational cost.
� 2007 Published by Elsevier B.V.
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O1. Introduction

An appropriate representation of the uncertainty in
analysis outcomes is an essential part of any complete anal-
ysis [1,2]. Specifically, an analysis that is intended to pro-
vide insights into the behavior of a system or the basis
for decisions must provide an assessment of the uncertainty
associated with its outcomes. Without such an assessment,
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neither insights drawn from the analysis nor decisions
based on it are adequately informed and supported.

Analyses of the behavior of complex systems typically
involve two types of uncertainty: aleatory and epistemic
[3,4]. Aleatory uncertainty arises from what is considered
to be an inherent randomness in the behavior of the system
under study. For example, in a risk assessment for a chem-
ical plant, the weather conditions at the time of an accident
are usually considered to be an aleatory uncertainty. Epi-
stemic uncertainty arises from a lack of knowledge about
a quantity that is assumed to have a fixed value in the con-
text of a particular analysis. For example, the pressure at
which a specific reactor containment will fail is presumably
fixed but certainly unknown and is thus an epistemic uncer-
ased computational strategy for the representation ..., Comput.
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tainty. As an example, probabilistic risk assessments for
nuclear power plants are typically designed to maintain a
separation between aleatory uncertainty and epistemic
uncertainty [5].

Probability has traditionally been employed as the
mathematical structure used to represent both aleatory
uncertainty and epistemic uncertainty [6]. With this usage,
an analysis maintaining a separation of aleatory uncer-
tainty and epistemic uncertainty involves two probability
spaces: a probability space characterizing aleatory uncer-
tainty and a probability space characterizing epistemic
uncertainty. However, many individuals have reservations
about the use of probability to represent epistemic
uncertainty when there is limited information available
on which to base a fully structured development of proba-
bility. In particular, the concern is that the definition of a
full probabilistic description of uncertainty entails an
implication of a higher resolution of knowledge than is
really present.

Evidence theory provides an alternative to probability
theory for the representation of epistemic uncertainty in
model predictions that derives from epistemic uncertainty
in model inputs [7]. The potential benefit, and hence
appeal, of evidence theory is that it allows a less restrictive
specification of uncertainty than is possible within the axi-
omatic structure on which probability theory is based.
Unfortunately, the propagation of an evidence theory
representation for uncertainty through a model is more
computationally demanding than the propagation of a
probabilistic representation for uncertainty, with this diffi-
culty constituting a serious obstacle to the use of evidence
theory in the representation of uncertainty in predictions
obtained from computationally intensive models. This pre-
sentation describes and illustrates a sampling-based com-
putational strategy for the representation of epistemic
uncertainty in model predictions with evidence theory. Pre-
liminary trials indicate that the presented strategy can be
used to propagate uncertainty representations based on
evidence theory in analysis situations where naı̈ve sam-
pling-based (i.e., unsophisticated Monte Carlo) procedures
are impracticable due to computational cost.

2. Evidence theory

An analysis can be conceptually represented in the func-
tional form y ¼ f ðxÞ, where x ¼ ½x1; x2; . . . ; xnX � is a vector
of analysis inputs, y ¼ ½y1; y2; . . . ; ynY � is a vector of analysis
results, and f is a function that maps x into y. In practice, f

can be quite complex and, as examples, could involve the
solution of a system of nonlinear partial differential equa-
tions or the operation of a sequence of linked models. Fur-
ther, the dimensionality of x and y is often high (e.g., on
the order of 100 s).

Probability theory provides the mathematical structure
that has been traditionally used to characterize the episte-
mic uncertainty in results obtained in analyses of the form
just indicated. With this approach, the uncertainty in the
Please cite this article in press as: J.C. Helton et al., A sampling-b
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elements of x is represented by a sequence of distributions
D1;D2; . . . ;DnX , where Dj is a distribution that character-
izes the uncertainty associated with the element xj of x.
Various correlations and other restrictions involving the
elements of x may also be specified. Typically, the distribu-
tions D1;D2; . . . ;DnX are developed through some form of
expert review process [8]. Conceptually, these distributions
give rise to a probability space ðX P ;XP ;mPX Þ that charac-
terizes the uncertainty in x, where (i) X P is the set (i.e., sam-
ple space) of possible values for x, (ii) XP is an
appropriately defined set of subsets of X P (i.e., a r-alge-
bra), and (iii) mPX is a function (i.e., a probability measure)
that defines the probability of individual elements of XP .
For notational convenience, the uncertainty in x character-
ized by the distributions D1;D2; . . . ;DnX and the associated
probability space ðX P ;XP ;mPX Þ can be represented by a
density function dX(x) defined on X P .

In turn, the uncertainty in x gives rise to uncertainty in
the elements of y. For notational convenience in the follow-
ing discussion, y is assumed to consist of a single real-val-
ued component y; specifically, y ¼ f ðxÞ is under
consideration. This eliminates the need to use subscripting
to identify individual elements of y but does not otherwise
alter the discussion. In concept, the uncertainty in y is char-
acterized by a probability space ðYP ;YP ;mPY Þ and an asso-
ciated density function dY ðyÞ defined on YP that derive
from the properties of the probability space ðX P ;XP ;mPX Þ
and the function f.

In practice, the uncertainty in y is summarized by an
estimated cumulative or complementary cumulative distri-
bution function (i.e., a CDF or CCDF). Specifically, the
CDF and CCDF for y are defined by the probabilities

probð~y 6 yÞ ¼
Z
XP

d½f ðxÞjy�dX ðxÞdX ffi
XnS

i¼1

d½f ðxiÞjy�=nS

ð2:1Þ

and

probð~y > yÞ ¼
Z
XP

�d½f ðxÞjy�dX ðxÞdX ffi
XnS

i¼1

�d½f ðxiÞjy�=nS;

ð2:2Þ

respectively, where

d½f ðxÞjy� ¼
1 if f ðxÞ 6 y;

0 if f ðxÞ > y;

�
�d½f ðxÞjy�

¼ 1� d½f ðxÞjy�

¼
0 iff ðxÞ 6 y;

1 iff ðxÞ > y

�

and xi ¼ ½xi1; xi2; . . . ; xi;nX �, i ¼ 1; 2; . . . ; nS is a random or
Latin hypercube sample [9,10] of size nS from X P generated
in consistency with the previously indicated distributions
D1;D2; . . . ;DnX . Latin hypercube sampling is often used
in analyses of this type because of its efficient stratification
properties.
ased computational strategy for the representation ..., Comput.
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Given that the probabilities in Eqs. (2.1) and (2.2) can be
determined, the CDF and CCDF for y are formally defined
by the sets

CDF ¼ f½y; probY ð~y 6 yÞ� : y 2 YPg

ffi
��

y;
XnS

i¼1

�d½f ðxiÞjy�
�

nS : y 2 YP

�
ð2:3Þ

and

CCDF ¼ f½y; probY ð~y > yÞ� : y 2 YPg

ffi
��

y;
XnS

i¼1

d½f ðxiÞjy�
�

nS : y 2 Y P

�
; ð2:4Þ

respectively.
The uncertainty in y can also be represented with the

expected value EðyÞ and variance V ðyÞ of y given by

EðyÞ ¼
Z
XP

f ðxÞdX ðxÞdX ffi
XnS

i¼1

f ðxiÞ=nS ð2:5Þ

and

V ðyÞ ¼
Z

X P

½f ðxÞ � EðyÞ�2dX ðxÞdX

ffi
XnS

i¼1

�
f ðxiÞ �

XnS

i¼1

f ðxiÞ
�

nS
�2�
ðnS � 1Þ; ð2:6Þ

respectively, where xi, i ¼ 1; 2; . . . ; nS, is the sample indi-
cated in conjunction with Eqs. (2.1) and (2.2). However,
a large amount of information is lost when only EðyÞ and
V ðyÞ are used to represent the uncertainty in y as the infor-
mation given by nS results has been coalesced into only two
numbers. As a result, CDFs and CCDFs provide more
informative representations of uncertainty than means
and variances.

The results used in the estimation of the CDF and
CCDF in Eqs. (2.3) and (2.4) constitute a mapping

½xi; f ðxiÞ� ¼ ½xi1; xi2; . . . ; xi;nX ; yi�; i ¼ 1; 2; . . . ; nS; ð2:7Þ

between analysis inputs and analysis results, where
yi ¼ f ðxiÞ. Once generated, this mapping can be investi-
gated with a variety of sensitivity analysis procedures [8].
Such sensitivity analyses constitute an important part of
analyses employing a sampling-based propagation of
uncertainty.

Analyses based on probabilistic characterization of epi-
stemic uncertainty are very popular and have been widely
used [8,10]. However, such analyses are open to the criti-
cism that there may not be enough information available
to justify the definition of the distributions D1;D2; . . . ;
DnX . In particular, defining a probability distribution for
an element xj of x imposes a large amount of structure
on the characterization of the uncertainty with respect to
what the appropriate value for xj is. When there is little
information about the value of a variable, this imposed
structure may not be appropriate. For example, there is a
large difference in concept and implication between saying
Please cite this article in press as: J.C. Helton et al., A sampling-b
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that all that is known about a quantity is that its value is
located somewhere in an interval [a,b] and saying that a
uniform distribution on [a,b] characterizes degrees of belief
with respect to where the value of this quantity is located in
the interval [a,b].

Several alternatives to probability theory for the repre-
sentation of uncertainty have been proposed, including
interval analysis, possibility theory, fuzzy set theory, and
evidence theory [11–18]. The introduction of these alterna-
tives to probability theory for the representation of episte-
mic uncertainty has been accompanied by a lively debate
with respect to their appropriateness and usefulness, with
some analysts maintaining that probability theory is the
only appropriate mathematical structure for the represen-
tation of uncertainty and other analysts maintaining that
these alternative uncertainty representations are essential
to an appropriate representation of uncertainty in the pres-
ence of limited information [7]. While not rejecting all use
of probability theory to represent epistemic uncertainty,
the authors of this paper feel that the indicated alternative
mathematical structures for the representation of uncer-
tainty do have useful roles to play when uncertainty must
be characterized, and decisions made, on the basis of lim-
ited information.

The focus of this paper is on evidence theory, which pro-
vides a less structured representation of uncertainty than
probability theory and yet is still closely related to probabil-
ity theory. Indeed, an uncertainty representation with evi-
dence theory approaches an uncertainty representation
with probability theory as the amount of information and/
or insight available for use in the characterization of uncer-
tainty increases. The authors find this connection to be very
appealing. Evidence theory is also sometimes referred to as
Dempster–Shafer theory in recognition of the early develop-
ment work of these two individuals [19–22].

Just as a probability space involving a quantity x is the
basic mathematical structure in probability theory, an evi-
dence space involving a quantity x is the basic mathemati-
cal structure in evidence theory. Similarly to a probability
space for x, an evidence space for x is a triple of the form
ðX E;XE;mEX Þ, where (i) XE is the set (i.e., sample space or
universal set) of possible values of x, (ii) XE is a set of sub-
sets of XE, and (iii) mEX is a function satisfying the
conditions

mEX ðUÞ > 0 if U � XE and U 2 XE; ð2:8Þ
mEX ðUÞ ¼ 0 if U � XE and U 62 XE ð2:9Þ
andX
U2XE

mEX ðUÞ ¼ 1: ð2:10Þ

The numeric value mEX ðUÞ is referred to as the basic prob-
ability assignment (BPA) for a subset U of XE, and the ele-
ments of XE (i.e., the subsets of XE with nonzero BPAs) are
referred to as the focal elements of the evidence space.

The sets X P and XE associated with a probability space
ðX P ;XP ;mPX Þ and an evidence space ðXE;XE;mEX Þ for a
ased computational strategy for the representation ..., Comput.
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quantity x are conceptually the same as both X P and XE

simply contain all possible values for x. However, the sets
XP and XE and the functions mPX and mEX are conceptu-
ally different. Collectively, the sets in XP constitute a r-
algebra; specifically, (i) if U 2 XP , then Uc 2 XP , where
Uc is the complement of U, and (ii) if U1;U2; . . ., is a
sequence of elements of XP , then [iU i 2 XP and
\iU i 2 XP . In contrast, there is no specified structure asso-
ciated with XE as the membership of a subset U of XE in XE

is defined solely by the property mEX ðUÞ > 0. Further, XP

has an uncountably infinite number of elements in most
developments of probability while XE can never have more
than a countably infinite number of elements and usually
has a finite number of elements.

The function mPX defines the probability associated with
elements of XP and is referred to as a probability measure.
Specifically, (i) if U 2 XP , then 0 6 mPX ðUÞ 6 1, (ii)
mPX ðX P Þ ¼ 1, and (iii) if U1;U2; . . . is a sequence of disjoint
sets from XP , then mPX ð[iU iÞ ¼

P
imPX ðU iÞ. A fundamental

property of probability that results from the preceding
is

mPX ðUÞ þ mPX ðUcÞ ¼ 1 ð2:11Þ
T
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for U 2 XP . In contrast, less structure is imposed on mEX as
only the relationships in Eqs. (2.8)–(2.10) are required to
hold. Conceptually, mEX ðUÞ can be interpreted as the
amount of information (i.e., level of credibility or probabil-
ity) that can be assigned to U but can in no known way be
assigned to any subset of U.

Probability theory has only one measure of uncertainty:
probability, which is defined by the function mXP . In con-
trast, evidence theory has two measures of uncertainty:
belief and plausibility, which are derived from the function
mEX. Specifically, the belief BelX ðUÞ and plausibility PlX ðUÞ
of a subset U of XE are defined by

BelX ðUÞ ¼
X
V�U

mEX ðVÞ and PlX ðUÞ ¼
X
V\U6¼;

mEX ðVÞ: ð2:12Þ

Intuitively, BelX ðUÞ provides a measure of the amount of
information that supports U being true (e.g., that U con-
tains the true value for the epistemically uncertain quantity
x), and PlX ðUÞ provides a measure of the absence of infor-
mation that supports U being false (e.g., that U does not
contain the true value for the epistemically uncertain quan-
tity x). Thus, for example, BelX ðUÞ ¼ 0 indicates that none
of the available information unambiguously supports U
being true (i.e., no focal element of the evidence space is
a subset of U), and PlX ðUÞ ¼ 1 indicates that none of the
available information unambiguously supports U being
false (i.e., every focal element of the evidence space inter-
sects U).

The preceding definitions and interpretations for belief
and plausibility arise from viewing the BPA associated with
a focal element of an evidence space as providing a measure
of the amount of information that can be assigned to a set
Please cite this article in press as: J.C. Helton et al., A sampling-b
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but cannot be specifically assigned to any subset of that set.
Thus, as a result of the subset requirement in the definition
of belief in Eq. (2.12), belief provides a measure of the
amount of information that has to be assigned to a set.
In contrast, as a result of the intersection requirement in
the definition of plausibility in Eq. (2.12), plausibility pro-
vides a measure of the total amount of information that
could possibly be assigned to a set or, equivalently, a mea-
sure of the absence of information that cannot be assigned
to the set. The names belief and plausibility for the mathe-
matical entities defined in Eq. (2.12) are intuitively sugges-
tive of the ideas indicated in the preceding discussion, with
‘‘belief’’ suggesting how strongly it is felt that something is
true and ‘‘plausibility’’ suggesting how strongly it is felt
that something might be true.

The following relationships hold for belief and plausibil-
ity and a subset U of XE:

BelX ðUÞ þ BelX ðUcÞ 6 1;

PlX ðUÞ þ PlX ðUcÞP 1;

PlX ðUÞ þ BelX ðUcÞ ¼ 1: ð2:13Þ

Thus, unlike the probabilistic relationship in Eq. (2.11), the
belief assigned to a set does not uniquely determine the be-
lief assigned to its complement, and similarly, the plausibil-
ity assigned to a set does not uniquely determine the
plausibility assigned to its complement. Further, (i) both
a set and its complement can have beliefs that are equal
to or close to zero, (ii) both a set and its complement can
have plausibilities that are equal to or close to one, and
(iii) a set can have plausibility close to one only if the belief
in the complement of that set is close to zero.

As previously indicated, the use of probability theory to
characterize the epistemic uncertainty associated with the
vector x is accomplished by assigning a probability distri-
bution Dj to each element xj of x. In concept, this corre-
sponds to developing a probability space ðX Pj;XPj;mPjÞ
for each xj and then developing the probability space
ðX P ;XP ;mPX Þ characterizing the uncertainty in x from
these probability spaces. Of course, this level of formality
is never used in practice as defining the Dj by specifying
CDFs (or density functions, which give rise to CDFs) is
all that is needed for the description and computational
implementation of an analysis. However, the concept of
probability spaces for the individual elements of x is intro-
duced to make a conceptual and notational connection
with what is done when evidence theory is used to charac-
terize the epistemic uncertainty associated with the ele-
ments of x.

When evidence theory is used to represent the epistemic
uncertainty associated with the elements of x, an evidence
space ðXEj;XEj;mEjÞ is defined to characterize the uncer-
tainty associated with each element xj of x, where (i) XEj

is the set of possible values for xj, (ii) XEj ¼ fU j1;Uj2;
. . . ;U j;nðjÞg is the set of focal elements for xj, and (iii) the
function mEj defines the BPA for each subset of XEj. In
turn, the evidence spaces ðXEj;XEj;mEjÞ for the individual
ased computational strategy for the representation ..., Comput.
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elements of x give rise to the evidence space ðXE;XE;mEX Þ
for x. Specifically,

XE ¼ X E1 � XE2 � � � � � XE;nX ; ð2:14Þ

XE ¼ fU : U ¼ U1r � U2s � � � � � UnX ;t; 1 6 r

6 nð1Þ; 1 6 s 6 nð2Þ; . . . ; 1 6 t 6 nðnX Þg ð2:15Þ

and

mXEðUÞ ¼
mE1ðU1rÞmE2ðU2sÞ; . . . ;mE;nX ðUnX ;tÞ

if U ¼ U1r � U2s � � � � � UnX ;t 2 XE;

0 otherwise:

8><
>:

ð2:16Þ

The number of sets (i.e., focal elements) in XE is given by
n ¼

QnX
j¼1nðjÞ, which can become quite large as nX and

the individual nðjÞs increase in size. The preceding defini-
tion for ðXE;XE;mEX Þ is based on the assumption that
the xjs are independent. The development of an evidence
space for x is considerably more complicated if the xjs
are not independent and is not considered here [23].

Characterization of the epistemic uncertainty in x with
probability (i.e., with the uncertainty in x characterized
by a probability space ðX P ;XP ;mPX ÞÞ results in the uncer-
tainty in y ¼ f ðxÞ also bring characterized by a probability
space ðYP ;YP ;mPY Þ that derives from the properties of
ðX P ;XP ;mPX Þ and the function f. Similarly, the character-
ization of the epistemic uncertainty in x with an evidence
theory representation (i.e., with the uncertainty in x char-
acterized by an evidence space ðXE;XE;mEX ÞÞ results in
the uncertainty in y ¼ f ðxÞ also being characterized by an
evidence space ðYE;YE;mEY Þ that derives from the proper-
ties of ðXE;XE;mEX Þ and the function f.

In practice, the evidence space ðYE;YE;mEY Þ is unlikely to
be constructed in a real analysis. If f is expensive to evaluate,
the computational cost of generating a reasonable approxi-
mation to ðYE;YE;mEY Þ is likely to be prohibitive. Instead,
the uncertainty associated with y is likely to be summarized
with a cumulative belief function and a cumulative plausibil-
ity function (i.e., a CBF and a CPF) or a complementary
cumulative belief function and a complementary cumulative
plausibility function (i.e., a CCBF and a CCPF). Similarly
to the defining probabilities for a CDF and CCDF in Eqs.
(2.1) and (2.2), the defining beliefs and plausibilities for a
CBF, CCBF, CPF and CCPF are given by

BelY ð~y 6 yÞ ¼
X
U�Uy

mEY ðUÞ;

BelY ð~y > yÞ ¼
X
U�Uc

y

mEY ðUÞ; ð2:17Þ

PlY ð~y 6 yÞ ¼
X
U\Uy 6¼;

mEY ðUÞ and

PlY ð~y > yÞ ¼
X
U\Uc

y 6¼;
mEY ðUÞ; ð2:18Þ

respectively, where Uy ¼ f~y : ~y 2 YE and ~y 6 yg is the set
of all values in YE that are less than or equal to y. The
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CBF, CCBF, CPF and CCPF for y are then formally de-
fined by the sets

CBF ¼ f½y;BelY ð~y 6 yÞ� : y 2 YEg;
CCBF ¼ f½y;BelY ð~y > yÞ� : y 2 YEg; ð2:19Þ
CPF ¼ f½y;PlY ð~y 6 yÞ� : y 2 YEg and

CCPF ¼ f½y;PlY ð~y > yÞ� : y 2 YEg; ð2:20Þ

respectively. Analogous definitions for a CDF and a
CCDF are given in Eqs. (2.3) and (2.4).

As formally presented in Eqs. (2.17) and (2.18), the eval-
uation of BelY ð~y 6 yÞ;BelY ð~y > yÞ;PlY ð~y 6 yÞ and
PlY ð~y > yÞ requires knowledge of all the focal elements in
YE and their associated BPAs. Such information is unlikely
to be determined in a real analysis. Rather, a more likely
approach is to use a sampling-based procedure to estimate
BelY ð~y 6 yÞ;BelY ð~y > yÞ;PlY ð~y 6 yÞ and PlY ð~y > yÞ. With
this approach, the indicated beliefs and plausibilities are
estimated by

CBF ¼ f½y;BelX ðf �1½Uy �Þ� : y 2 YEg
¼ f½y; 1� PlX ðf �1½Uc

y �Þ� : y 2 YEg
ffi f½yi; 1� PlX ðfxj : yj > yigÞ� : i ¼ 1; 2; . . . ; nSg;

ð2:21Þ
CCBF ¼ f½y;BelX ðf �1½Uc

y �Þ� : y 2 YEg
¼ f½y; 1� PlX ðf �1½Uy �Þ� : y 2 YEg
ffi f½yi; 1� PlX ðfxj : yj 6 yigÞ� : i ¼ 1; 2; . . . ; nSg;

ð2:22Þ
CPF ¼ f½y;PlX ðf �1½Uy �Þ� : y 2 YEg

ffi f½yi;PlX ðfxj : yj 6 yigÞ� : i ¼ 1; 2; . . . ; nSg; ð2:23Þ

and

CCPF ¼ f½y;PlX ðf �1½Uc
y �Þ� : y 2 YEg

ffi f½yi;PlX ðfxj : yj > yigÞ� : i ¼ 1; 2; . . . ; nSg;
ð2:24Þ

where

½xi; yi� ¼ ½xi; f ðxiÞ�; i ¼ 1; 2; . . . ; nS; ð2:25Þ

is a mapping between XE and YE defined by a suitable sam-
ple from XE. The conversion from belief to plausibility in
Eqs. (2.21) and (2.22) through the use of the equality in
Eq. (2.13) is necessary because the subset relationship that
defines belief cannot be determined with a finite sample
when the sets Uy and Uc

y contain infinitely many elements
(which is usually the case).

In concept, any sampling strategy can be used to gener-
ate the mapping in Eq. (2.25) as long as the sampled points
provide adequate coverage of the focal elements in XE as
the sample size nS increases (e.g., provided the sampled
points tend to become dense in XE as nS increases)
[24,25]. If the focal elements for the elements xj of x are
intervals of the form Ijk ¼ fxj : ajk 6 xj 6 bjkg, a sampling
ased computational strategy for the representation ..., Comput.



T

455
456
457

459459

460
461
462

464464

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493

494
495

496
497
498

499
500
501
502
503
504

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

6 J.C. Helton et al. / Comput. Methods Appl. Mech. Engrg. xxx (2007) xxx–xxx

CMA 8267 No. of Pages 19, Model 5+

12 April 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

distribution for each xj for use in generating the mapping in
Eq. (2.25) can be defined by the density function

djðxjÞ ¼
XnðjÞ
k¼1

dðxjjIjkÞmjEðIjkÞ=ðbjk � ajkÞ

where dðxjjIjkÞ ¼
1 if xj 2 Ijk;

0 if xj 62 Ijk:

�
ð2:26Þ

Then, the corresponding sampling distribution for x is de-
fined by the density function

dðxÞ ¼
YnX

j¼1

djðxjÞ: ð2:27Þ

This distribution is appealing as it preserves some of the
character and emphasis of the underlying evidence space
ðXE;XE;mEX Þ that has been developed from the evidence
spaces ðXEj;XEj;mEjÞ, j ¼ 1; 2; . . . ; nX , defined for the indi-
vidual components of x.

Unfortunately, there is a dimensionality challenge in the
implementation of calculations involving evidence theory
representations for uncertainty. Specifically, the cardinality
n of the set XE defined in Eq. (2.15) increases rapidly with
increasing values for the number nX of components of x

and the number nðjÞ of focal elements associated with each
component xj of x. For example, n ¼

QnX
j¼1nðjÞ ¼ 1015 when

nX ¼15 and nðjÞ ¼10 for j ¼ 1; 2; . . . ; nX . The computa-
tional challenge results because obtaining evidence theory
results for y (e.g., as defined by the CBF, CCBF, CPF
and CCPF in Eqs. (2.19) and (2.20)) and the associated
approximations in Eqs. (2.21)–(2.24) effectively requires
determining, or at least estimating, the minimum and max-
imum value of y for each focal element in XE. When n is
large and/or the evaluation of f(x) is computationally
demanding, the number of evaluations of f(x) needed to
obtain the approximations of the CBF, CCBF, CPF and
CCPF for y in Eqs. (2.21)–(2.24) or to directly estimate
the BPAs for all focal elements associated with the evidence
space ðYE;YE;mEY Þ is computationally impracticable. The
purpose of this presentation is to describe and illustrate a
computational strategy for the determination of the CBF,
CCBF, CPF and CCPF for y that can be successfully
employed when the cardinality n of XE is large.

3. Computational strategy for estimating CBF, CCBF, CPF

and CCPF for y

The computational strategy for estimating the CBF,
CCBF, CPF and CCPF for y involves the following initial
steps:

Step 1. Define a sampling distribution for x based on the
specified evidence theory structure for the uncer-
tain model inputs. The probability distribution
defined by the density function in Eq. (2.27) is rec-
ommended for use here because of its match to the
general character of the evidence space for x.
561
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Step 2. Generate a Latin hypercube sample [9,10] from
the uncertain inputs with the sampling distribution
defined in Step 1. The outcome of this step is a
sample of the form indicated in conjunction with
Eqs. (2.1) and (2.2). In general, analyses will con-
tain large numbers of both uncertain input vari-
ables and uncertain predicted variables (i.e., nX

and nY as indicated in the definitions of x and y

in Section 2). As a result, it is difficult to develop
an a priori sampling plan based on anticipated
relationships between the elements of x and the
elements of y. Under these conditions, Latin
hypercube sampling is a very effective sampling
strategy because its dense stratification across the
range of each uncertain input results in a good
representation of model behavior regardless of
which predicted variable is under consideration
and which elements of x actually affect the uncer-
tainty in this variable.

Step 3. Propagate the sample generated in Step 2 through
the model to obtain values for all model results of
interest. Specifically, this corresponds to generat-
ing the mapping between uncertain input variables
and uncertain predicted variables indicated in Eq.
(2.7), where in general yi is a vector of dimension
nY rather than a scalar.
The following additional steps are then performed
individually for each model result y of interest. As
previously indicated, most analyses will involve
the consideration of a large number of individual
results.

Step 4. Perform a sensitivity analysis to identify which of
the uncertain model inputs, say x1; x2; . . . ; xr

ordered by importance, are significant contribu-
tors to the uncertainty associated with y. This sen-
sitivity analysis is based on an exploration of the
mapping in Eq. (2.7) generated in Step 3 for the
particular y under consideration. A variety of sen-
sitivity analysis procedures are available for use in
this step [8].

Step 5. Use the results of Step 3 and an appropriate
regression procedure to develop a response surface
approximation to y as a function of x1; x2; . . . ; xr.
Both parametric and nonparametric regression
models are possible procedures for use [26–28].
However, when complex relationships between y
and the xjs are present, it is likely that nonpara-
metric procedures will be required in order to
obtain a reasonable response surface approxima-
tion to y. If the response surface construction is
carried out in a stepwise manner in which (i) the
most important element of x with respect to
the uncertainty in y is selected first (i.e., x1) and
the corresponding response surface constructed,
(ii) then the next most important element of x with
respect to the uncertainty in y is selected (i.e., x2)
and the corresponding response surface con-
ased computational strategy for the representation ..., Comput.
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structed with x1 and x2, and (iii) this process con-
tinues until no more elements of x are determined
to affect y, then this stepwise procedure also pro-
vides the sensitivity analysis results indicated in
Step 4.

Step 6. Generate a ‘‘large’’ random sample from the uncer-
tain inputs in consistency with the sampling distri-
bution defined in Step 1 and use the response
surface for y constructed in Step 5 to estimate y

for each element of this sample. This creates a map-
ping between x1; x2; . . . ; xr and y of the form indi-
cated in Eq. (2.25). However, unlike the mapping
in Eq. (2.25), this mapping only involves the xjs that
the sensitivity analysis in Step 4 identified as being
important with respect to the uncertainty in y.

Step 7. Perform a sequential construction of the CBF,
CCBF, CPF and CCPF for y with the response
surface results from Step 6. In this sequential con-
struction, a CBF, CCBF, CPF and CCPF are first
estimated for y as indicated in Eqs. (2.21)–(2.24)
with x1 assigned its specified evidence space and
x2; x3; . . . ; xr assigned degenerate evidence spaces
(i.e., evidence spaces in which the sample space is
given a basic probability assignment of one); then,
a CBF, CCBF, CPF and CCPF are estimated for y

as indicated in Eqs. (2.21)–(2.24) with x1 and x2

assigned their specified evidence spaces and
x3; x4; . . . ; xr assigned degenerate evidence spaces;
the process continues in this manner until the
CBFs, CCBFs, CPFs and CCPFs for y no longer
show meaningful change with the consideration
of the specified evidence spaces for additional vari-
ables or the specified evidence spaces for all the
variables identified in the sensitivity analysis per-
formed at Step 5 (i.e., x1; x2; . . . ; xrÞ have been
incorporated into a CBF, CCBF, CPF and CCPF
for y.

The indicated approach to the construction of CBFs,
CCBFs, CPFs and CCPFs for model predictions has sev-
eral desirable features, including (i) efficient use of model
evaluations, (ii) capability to consider many different model
predictions with the same set of model evaluations, (iii)
mitigation of the dimensionality problem that hinders the
propagation of evidence theory structures through a model
when a large number of uncertain model inputs is under
consideration, (iv) an ‘‘outside-in’’ approximation of
CBFs, CCBFs, CPFs and CCPFs that always bounds the
actual CBF, CCBF, CPF and CCPF for a model prediction
(see Section 7, Ref. [29]), and (v) the capability to generate
a variety of sensitivity analysis results.

4. Example for illustration

The example involves a system with two weak links
(WLs) and two strong links (SLs) in an accident involving
a fire that has the potential to result in a condition that
Please cite this article in press as: J.C. Helton et al., A sampling-b
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could allow an unintended operation of the system [30]
and is adapted from an example presented in Section 6 of
Ref. [29]. The role of the SLs is to permit operation
of the system only under intended conditions. The role of
the WLs is to fail under accident conditions and thereby
render the system incapable of operation. The failure of
both SLs before the failure of either WL is considered to
be the undesirable event as this places the system in a con-
figuration in which an activating signal could result in
operation of the system. The likelihood that such a config-
uration occurs is referred to as probability of loss of
assured safety (PLOAS). The indicated probability (i.e.,
PLOAS) derives from the assumption that the exact tem-
peratures at which the individual links will fail is not
known precisely. Rather, there is assumed to be a random
(i.e., aleatory) uncertainty resulting from manufacturing
variability that determines the exact temperatures at which
the individual links fail.

As described in Section 6 of Ref. [29] and formally
derived in conjunction with Eq. (4.9) of Ref. [31], the value
pF for PLOAS is given by

pF ¼
X2

k¼1

Z TMXSLk

TMNSLk

fSLkðT SLÞ

�
Y2

l¼1
l 6¼k

I ½�1;TMPSLl½TMPSL�1
k ðT SLÞ�; fSLl�

8>><
>>:

9>>=
>>;

�
Y2

j¼1

I ½TMPWLj½TMPSL�1
k ðT SLÞ�;1; fWLj�

( )
dT SL;

ð4:1Þ

where (i) TMPWLjðtÞ is the temperature (�C) of WL j at
time t (min), (ii) TMPSLkðtÞ is the temperature (�C) of
SL k at time t (min), (iii) TMPSLjðtÞ and TMPSLkðtÞ are
assumed to be increasing functions of time, (iv) fWLjðT Þ
is the density function (�C�1) for failure temperature of
WL j, (v) fSLj is the density function (�C-1) for failure tem-
perature of SL k, (vi) time is assumed to range from tMN
to tMX with TMNSLk ¼ TMPSLkðtMNÞ and TMXSLk ¼
TMPSLkðtMXÞ, and (vii) I ½a; b; f � ¼

R b
a f ðT ÞdT is used for

notational convenience.
Further, the temperature curves and density functions in

Eq. (4.1) are defined by

TMPWLjðtÞ
¼ c1 þ ½c2 þ c3j expð�c4jtÞ sinðc5jtÞ� tanhðc6jtÞ ð4:2Þ

TMPSLkðtÞ ¼ c1 þ c2 tanh½c62ð1þ c7kÞt�; ð4:3Þ
fWLjðT WLÞ ¼ ð1=c9

ffiffiffiffiffiffi
2p
p
Þ exp½�ðT WL � c8Þ2=2c2

9� ð4:4Þ

and

fSLkðT SLÞ ¼ ð1=c11

ffiffiffiffiffiffi
2p
p
Þ exp½�ðT SL � c10Þ2=2c2

11� ð4:5Þ

with the indicated constraints defined in Table 1.
The 16 variables in Table 1 are assumed to be epistemi-

cally uncertain. For simplicity, it is assumed that the uncer-
ased computational strategy for the representation ..., Comput.
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Table 1
Uncertain variables and associated uncertainty ranges considered in example uncertainty analyses

c1 – Temperature (�C) of WLs and SLs before start of fire. Range: [�30,40 �C].

c2 – Temperature increase (�C) above c1 at steady state. Range: [800,1000 �C].

c31 – Peak amplitude of temperature transient for WL 1. Range: [�2600,�100 �C].
c32 – Peak amplitude of temperature transient for WL 2. Range: [�2600,�100 �C].

c41 – Thermal heating time constant (min�1) for WL 1. Range: [0.2,0.4 min�1].
c42 – Thermal heating time constant (min�1) for WL 2. Range: [0.2,0.4 min�1].

c51 – Frequency response (min�1) of temperature transient for WL 1. Range: [0.1,0.2 min�1].
c52 – Frequency response (min�1) of temperature transient for WL 2. Range: [0.1,0.2 min�1].

c61 – Time constant (min�1) determining the rate at which WL 1 reaches steady state temperature. Range: [0.01,0.015 min�1].
c62 – Time constant (min�1) determining the rate at which WL 2 reaches steady state temperature. Range: [0.021,0.025 min�1].

c71 – Factor (dimensionless) used to account for more rapid heating in SL 1 than in the associated WL (i.e.,WL 2). Range: [0.3,0.5].
c72 – Factor (dimensionless) used to account for more rapid heating in SL 2 than in the associated WL (i.e.,WL 2). Range: [0.6,2.0].

c8 – Expected value (�C) of normal distribution for WL failure temperatures. Range: [285,315 �C].

c9 – Standard deviation (�C) of normal distribution for WL failure temperatures. Range: [4,12 �C].

c10 – Expected value (�C) of normal distribution for SL failure temperature. Range: [560,580 �C].

c11 – Standard deviation (�C) of normal distribution for SL failure temperature. Range: [15,35 �C].

Adapted from Table 1, Ref. [29].

Table 2
Illustrative specification of uncertainty information used in example uncertainty analyses with probability theory and evidence theory for variables in
Table 1 (Table 2, Ref. [29])

Expert 1: States appropriate value for variable is in the interval I11 ¼ ½a; b� but provides no information on uncertainty structure within [a,b].

Expert 2: Divides [a,b] into five nonoverlapping intervals of equal length (i.e., I2i ¼ ½aþ ðb� aÞði� 1Þ=5, aþ ðb� aÞi=5) for i ¼ 1; 2; 3; 4 and
I25 ¼ ½aþ ðb� aÞði� 1Þ=5, aþ ðb� aÞi=5� for i = 5) and states that the appropriate value for the variable is equally likely to be in each of these
intervals.

Expert 3: Divides [a,b] into following five nonoverlapping intervals: I31 ¼ ½a; aþ ðb� aÞ=10�, I32 ¼ ½aþ ðb� aÞ=10; aþ 4ðb� aÞ=10Þ,
I33 ¼ ½aþ 4ðb� aÞ=10, aþ 6ðb� aÞ=10Þ, I34 ¼ ½aþ 6ðb� aÞ=10, aþ 9ðb� aÞ=10Þ, I35 ¼ ½aþ 9ðb� aÞ=10; b]. States that the probability (i.e.,
likelihood) that the appropriate value for the variable is contained in each of these intervals is 0.05, 0.2, 0.5, 0.2 and 0.05, respectively.

Expert 4: Divides [a,b] into following five nested intervals: I41 ¼ ½aþ 4ðb� aÞ=10, aþ 6ðb� aÞ=10Þ, I42 ¼ ½aþ 3ðb� aÞ=10, aþ 7ðb� aÞ=10Þ,
I43 ¼ ½aþ 2ðb� aÞ=10, aþ 8ðb� aÞ=10Þ, I44 ¼ ½aþ ðb� aÞ=10, aþ 9ðb� aÞ=10Þ, I45 ¼ ½a; b�. States that amount of probability (i.e., likelihood) that
can be assigned to the proposition that a given interval contains the appropriate value to use for the variable is 0.2.

Table 3
Basic probability assignments (BPAs) for a Variable on the interval [a,b]
derived from the information in Table 2 (Table 3, Ref. [29])

mðUÞ ¼ 3=10 if U ¼ I1 ¼ ½a; b�
= 1/20 if U ¼ I2 ¼ ½a; aþ ðb� aÞ=5Þ
= 1/20 if U ¼ I3 ¼ ½aþ ðb� aÞ=5; aþ 2ðb� aÞ=5Þ
= 9/40 if U ¼ I4 ¼ ½aþ 2ðb� aÞ=5; aþ 3ðb� aÞ=5Þ
= 1/20 if U ¼ I5 ¼ ½aþ 3ðb� aÞ=5; aþ 4ðb� aÞ=5Þ
= 1/20 if U ¼ I6 ¼ ½aþ 4ðb� aÞ=5; b�
= 1/80 if U ¼ I7 ¼ ½a; aþ ðb� aÞ=10Þ
= 1/20 if U ¼ I8 ¼ ½aþ ðb� aÞ=10; aþ 4ðb� aÞ=10Þ
= 1/20 if U ¼ I9 ¼ ½aþ 6ðb� aÞ=10; aþ 9ðb� aÞ=10Þ
= 1/80 if U ¼ I10 ¼ ½aþ 9ðb� aÞ=10; b�
= 1/20 if U ¼ I11 ¼ ½aþ 3ðb� aÞ=10; aþ 7ðb� aÞ=10Þ
= 1/20 if U ¼ I12 ¼ ½aþ 2ðb� aÞ=10; aþ 8ðb� aÞ=10Þ
= 1/20 if U ¼ I13 ¼ ½aþ ðb� aÞ=10; aþ 9ðb� aÞ=10Þ
= 0

1:0 otherwise
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cated in Table 1 is specified in the same manner by four
independent experts (Table 2).

The information in Table 2 is encoded into an evidence
space representation for the epistemic uncertainty associ-
ated with each variable by interpreting the given probabil-
ities as BPAs for the corresponding intervals (i.e., I11 for
Expert 1, and Iij, j ¼ 1; 2; . . . ; 5 for Expert i, i ¼ 2; 3; 4).
Specifically, the BPA mi associated with Expert i is given by

miðUÞ ¼
probiðUÞ if U 2 Ei

0 otherwise

�
ð4:6Þ

for an arbitrary set U of points from [a,b], where E1 ¼ fI11g
and Ei ¼ fI ij; j ¼ 1; 2; . . . ; 5g for i ¼ 2; 3; 4. The BPAs from
the individual experts are then equally weighted to produce
a final BPA m given by

mðUÞ ¼
XnE

i¼1

miðUÞ
,

nE; ð4:7Þ
Please cite this article in press as: J.C. Helton et al., A sampling-b
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where nE ¼ 4 is the number of experts and U is an arbitrary
subset of points from [a,b]. The preceding procedure re-
sults in an evidence space with 13 focal elements for each
ased computational strategy for the representation ..., Comput.
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Fig. 1. Form of the CPF, CDF, CBF, CCPF, CCDF and CCBF that results for each variable from the uncertainty information in Table 2 with variable
range normalized to [0,1].
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variable in Table 1 (Table 3). In turn, a probability distri-
bution for use in sampling can be defined for each variable
as indicated in Eq. (2.26). The form of the CPF, CDF,
CBF, CCPF, CCDF and CCBF that results for each vari-
able is shown in Fig. 1.

5. Example results

For this example,

x ¼ ½x1; x2; . . . ; x16� ¼ ½c1; c2; c31; . . . ; c11� ð5:1Þ

corresponds to the nX ¼ 16 variables in Table 1. Further,
the dependent variables selected for possible analysis corre-
spond to

y ¼ ½y1; y2; . . . ; y5�
¼ ½WL1T25;WL1T75; SL1T25; SL1T75; pF�; ð5:2Þ

where (i) WL1T25 and WL1T75 are the temperatures of
WL 1 at 25 and 75 min, respectively (see Eq. (4.2)), (ii)
SL1T25 and SL1T75 are defined similarly for SL 1 (see
Eq. (4.3)) and (iii) pF is the PLOAS (see Eq. (4.1)). Given
the time dependency of the results and the presence of mul-
tiple WLs and SLs, a real analysis would probably consider
many more uncertain results than the five indicated above.
The individual steps in the computational strategy for esti-
mating CBFs, CCBFs, CPFs and CCPFs for model results
are now illustrated.

5.1. Step 1: define sampling distribution

The sampling distribution for each uncertain variable
was defined as shown in Eq. (2.26). Specifically, this results
in a distribution with a density function defined by

djðxjÞ ¼
X13

k¼1

dðxjjIkÞmðIkÞ=LðIkÞ; ð5:3Þ

where Ik and m(Ik) are defined in Table 3, L(Ik) is the length
of the interval Ik, and the indicator variable dðxj j IkÞ is de-
Please cite this article in press as: J.C. Helton et al., A sampling-b
Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2006.10.049
Rfined in conjunction with Eq. (2.26). The form of the CDF
and CCDF associated with this distribution is shown in
Fig. 1.
E
D

5.2. Step 2: generate Latin hypercube sample

A Latin hypercube sample [9,10]

xi ¼ ½xi1; xi2; . . . ; xi;16�; i ¼ 1; 2; . . . ; nS; ð5:4Þ

of size nS ¼ 200 was generated from the possible values for
x in consistency with the distributions defined by the den-
sity functions in Eq. (5.3). Further, the Iman/Conover re-
stricted pairing technique was used in the generation of
this sample to assure that no spurious correlations between
the sampled variables were present [32].
5.3. Step 3: propagate sample through model

The model was evaluated for each element of the sample
in Eq. (5.4). This produced the mapping

½xi; yi� ¼ ½xi; WL1T25i;WL1T75i; SL1T25i; SL2T75i; pFi�
ð5:5Þ

for i ¼ 1; 2; . . . ; nS ¼200 from uncertain inputs to uncer-
tain results. As shown in Fig. 2, the analysis actually pro-
duced time-dependent values for the WL and SL
temperatures. Such time-dependence is typical of the re-
sults obtained in large analyses. The values for the temper-
ature results in Eq. (5.5) correspond to the results
associated with vertical lines drawn through the time–tem-
perature curves in Fig. 2 at times of 25 and 75 min. The val-
ues for pF in Eq. (5.5) are summarized by the CCDF in
Fig. 3.
5.4. Step 4: perform sensitivity analysis

This step involves carrying out a sensitivity analysis to
determine the dominant contributions to the uncertainty
ased computational strategy for the representation ..., Comput.
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Fig. 2. Time-dependent curves for WLs and SLs obtained with Latin hypercube sample with 100 curves from sample of size 200 shown.
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in each element of y. This analysis is based on exploring the
mapping between analysis inputs and analysis results in Eq.
(5.5). Many procedures exist that might be used in this
exploration, including correlation and partial correlation
analysis with raw or rank-transformed data, linear regres-
Please cite this article in press as: J.C. Helton et al., A sampling-b
Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2006.10.049
sion analysis with raw or rank-transformed data, statistical
tests for patterns based on gridding, entropy tests for pat-
terns based on gridding, squared rank differences/rank cor-
relation test, two dimensional Kolmogorov–Smirnov test,
and tests for patterns based on distance measures [8].

For illustration, the results of a sensitivity analysis with
stepwise rank regression are presented in Table 4, with var-
iable importance indicated by order of selection in the step-
wise procedure, the absolute value of the standardized rank
regression coefficients (SRRCs) in the final regression
model, and incremental changes in R2 values as additional
variables are added to the model (see Section 6.6.6, Ref.
[33], for a discussion of sensitivity analysis with rank
regression). For example, the three dominant variables
contributing to the uncertainty in WL1T25 are c61; c1 and
c2.
5.5. Step 5: develop response surface approximation

This step involves developing response surface replace-
ments for the original model with the variables identified
as being important in Step 4. Possibilities for response sur-
face construction include parametric regression procedures
such as linear regression (LIN_REG) and quadratic regres-
ased computational strategy for the representation ..., Comput.
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Table 4
Sensitivity analysis based on stepwise rank regression for mapping
½xi; yi�; y ¼ 1; 2; . . . ; nS ¼ 200, in Eq. (5.5)

Vara SRRCb R2c

WL1T25: WL 1 temperature at 25 min
c61 0.71 0.54
c1 0.49 0.78
c2 0.42 0.96

SL1T25: SL 1 temperature at 25 min
c2 0.70 0.52
c62 0.43 0.72
c71 0.33 0.83
c1 0.33 0.93
c31 0.05 0.94

WL1T75: WL 1 temperature at 75 min
c61 0.64 0.46
c2 0.64 0.87
c1 0.30 0.96

SL1T75: SL 1 temperature at 75 min
c2 0.94 0.89
c1 0.30 0.97
c71 0.03 0.97

log(pF): Logarithm PLOAS
c71 0.67 0.47
c2 0.38 0.62
c1 �0.29 0.70
c72 0.23 0.76
c8 0.20 0.80
c9 0.19 0.83
c10 �0.16 0.85
c11 0.16 0.88
c42 �0.14 0.90
c32 �0.11 0.91
c62 0.11 0.92
c52 �0.10 0.93

a Variables listed in order of selection in stepwise process with variable
required to have an a-values of 0.02 and 0.05 to enter and be retained in
the regression, respectively.

b Standardized rank regression coefficient (SRRC) for variable in final
regression model.

c Cumulative R2-value with entry of each variable into the regression
model.
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sion (QUAD_REG) and nonparametric regression proce-
dures such as locally weighted regression (LOESS), gener-
alized additive models (GAMs), projection pursuit
regression (PP_REG) and multivariate adaptive regression
splines (MARS). Brief descriptions and additional back-
ground references for LIN_REG, QUAD_REG, LOESS,
GAMs and PP_REG are given in Refs. [26–28]. A descrip-
tion of the MARS procedure is given in Ref. [34].

The preceding procedures can all be carried out in a
stepwise manner to determine variable importance, with
(i) the most important variable ~x1 being the variable that
results in the single-variable model with the most predictive
capability, (ii) the second most important variable ~x2 being
the variable that in conjunction with ~x1 results in the two-
variable model with the most predictive capability, and so
on until (iii) some stopping criterion is reached that indi-
cates that the consideration of additional variables does
not produce models with improved predictive capability.
Please cite this article in press as: J.C. Helton et al., A sampling-b
Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2006.10.049
E
D

P
R

O
O

F

Order of selection in the stepwise construction process
and fraction of variability explained (i.e., an R2-value)
can be used to indicate variable importance. The f-statistic
with appropriate degrees of freedom (see Section 3.9, Ref.
[35], and Section 3.13, Ref. [36]) can be used to determine a
stopping point in the stepwise variable selection procedure.
Additional discussion of nonparametric regression is avail-
able in a number of texts [35–40].

If the number of elements in x is not excessively large,
then this construction can be carried out in a stepwise man-
ner analogous to that shown in Table 4 for stepwise rank
regression. The most efficient procedure is to consider only
the variables identified in Step 4 as being important. How-
ever, if computationally practicable, this construction can
be carried out with sequential stepwise consideration of
all components of x as candidates for inclusion in the
response surface under consideration. Then, as indicated
in the description of Step 5 in Section 3, the sensitivity anal-
ysis in Step 4 and the response surface construction in Step
5 are in effect being carried out together, with variable
importance indicated by order of selection in the stepwise
response surface construction and the corresponding
changes in incremental R2 values.

For illustration, summaries of stepwise response surface
construction with several different methods are presented in
Table 5 for log(pF). As the MARS procedure worked as
well as or better than the other response surface procedures
considered for constructing approximations to the elements
of y, the MARS procedure was selected for use in deter-
mining the response surface approximations to be
employed in constructing evidence theory results in Step
6 (see Table 5 for log(pF) and Table 6 for WL1T25,
WL1T75, SL1T25 and SL1T75). The biggest differences
in the response surface constructions for the different pro-
cedures occurred for log(pF) (Table 5). The results with the
procedures illustrated for log(pF) in Table 5 are very sim-
ilar for WL1T25, WL1T75, SL1T25 and SL1T75 as a result
of the smooth and well-defined relationships between these
variables and the elements of x. However, such similarity
should not always be expected to be the case.

The high R2 values for the final response surface con-
structions with the MARS procedure in Tables 5 and 6
are indicative of a high predicative capability. As a further
test, a ‘‘leave one out’’ analysis was carried out in which
one observation at a time was dropped from the mapping
in Eq. (5.5) and then MARS response surfaces were con-
structed from the remaining 199 observations and used to
predict the elements of the dropped y-value. For each ele-
ment y of y, the result is a sequence

½yi; ŷi�; i ¼ 1; 2; . . . ; nS ¼ 200; ð5:6Þ

where yi is the original value in Eq. (5.5) and ŷi is the cor-
responding predicted value. As shown by the scatterplots
for the observed and predicted values for WL1T75 and
log(pF) in Fig. 4, the MARS procedure is predicting quite
well, although there is some noise in the predictions for
log(pF). Comparisons similar to the comparison for
ased computational strategy for the representation ..., Comput.
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Table 5
Summaries of stepwise construction of response surface approximations of
log(pF) from mapping in Eq. (5.5)

Vara R2b d.f.c p-vald PRESSe

LIN_REG
c71 0.4674 1.0 0.0000 1.24E2
c2 0.6220 1.0 0.0000 8.93E1
c1 0.7005 1.0 0.0000 7.16E1
c72 0.7624 1.0 0.0000 5.74E1
c9 0.8076 1.0 0.0000 4.68E1
c8 0.8464 1.0 0.0000 3.79E1
c11 0.8766 1.0 0.0000 3.07E1
c10 0.9011 1.0 0.0000 2.48E1
c42 0.9234 1.0 0.0000 1.96E1
c52 0.9359 1.0 0.0000 1.66E1
c62 0.9463 1.0 0.0000 1.41E1
c32 0.9565 1.0 0.0000 1.17E1

LOESS
c71 0.4674 1.0 0.0000 1.24E2
c2 0.6681 12.3 0.0000 8.83E1
c72 0.6853 �10.1 0.0000 7.53E1
c1 0.7629 1.3 0.0000 5.76E1
c8 0.8038 1.5 0.0000 4.86E1

RS_REG
c71 0.4727 2.0 0.0000 1.24E2
c2 0.6260 3.0 0.0000 9.15E1
c1 0.7089 4.0 0.0000 7.43E1
c72 0.7759 5.0 0.0000 6.08E1
c9 0.8291 6.0 0.0000 4.90E1
c8 0.8704 7.0 0.0000 4.14E1
c42 0.9030 8.0 0.0000 3.60E1
c11 0.9340 9.0 0.0000 2.73E1
c10 0.9610 10.0 0.0000 1.89E1
c32 0.9737 11.0 0.0000 1.65E1
c52 0.9869 12.0 0.0000 9.03E0
c62 0.9970 13.0 0.0000 3.03E0

GAM
c71 0.4675 1.0 0.0000 1.24E2
c2 0.6349 4.0 0.0000 8.90E1
c1 0.7104 1.0 0.0000 7.13E1
c72 0.7722 1.0 0.0000 5.67E1
c9 0.8178 2.0 0.0000 4.60E1
c8 0.8579 2.0 0.0000 3.68E1
c11 0.8949 7.0 0.0000 2.92E1
c10 0.9177 2.0 0.0000 2.32E1
c42 0.9416 2.0 0.0000 1.71E1
c32 0.9498 1.0 0.0000 1.50E1
c62 0.9591 2.0 0.0000 1.24E1
c52 0.9678 2.0 0.0000 1.01E1

MARS
c71 0.4674 1.0 0.0000 1.24E2
c2 0.6220 1.0 0.0000 9.44E1
c1 0.7110 2.0 0.0000 7.19E1
c72 0.7776 2.0 0.0000 5.93E1
c9 0.8267 2.0 0.0000 5.08E1
c42 0.8857 6.0 0.0000 4.87E1
c8 0.8990 �1.0 0.0000 3.35E1
c11 0.9393 6.0 0.0000 2.55E1
c10 0.9597 1.0 0.0000 2.30E1
c52 0.9755 8.0 0.0000 1.98E1
c32 0.9891 11.0 0.0000 1.13E1
c62 0.9971 9.0 0.0000 3.99E0
c31 0.9978 9.0 0.0000 4.36E0

Table 5 (continued)

Vara R2b d.f.c p-vald PRESSe

PP_REG
c71 0.4696 1.3 0.0000 1.26E2
c2 0.6500 5.6 0.0000 8.67E1
c72 0.7373 7.4 0.0000 8.57E1
c42 0.8196 16.2 0.0000 7.57E1
c9 0.8890 19.3 0.0000 7.95E1
c10 0.9278 8.0 0.0000 6.14E1

a Variables listed in order of selection in stepwise process.
b Cumulative R2-value with entry of each variable into the model.
c Incremental degrees of freedom with entry of each variable into the

model.
d p-Value associated with entry of each variable into the model.
e Predicted error sum of squares (PRESS) value for model; a deviation

from monotonically decreasing PRESS values indicates that the model
may be overfitting the data.

Table 6
Summaries of stepwise construction of response surface approximations to
WL1T25, WL5T75, SL1T25 and SL1T75 from mapping in Eq. (5.5) with
the MARS procedure

Vara R2b d.f.c p-vald PRESSe

WL1T25: WL 1 temperature at 25 min
c61 0.5946 4.0 0.0000 1.12E5
c1 0.8283 2.0 0.0000 4.83E4
c2 0.9998 �1.0 0.0000 5.44E1
c41 0.9999 4.0 0.0000 2.66E1
c51 1.0000 8.0 0.0000 2.00E1
c31 1.0000 9.0 0.0000 4.89E0

SL1T25: SL 1 temperature at 25 min
c2 0.5699 2.0 0.0000 2.37E5
c62 0.7700 2.0 0.0000 1.29E5
c71 0.8849 0.0 0.0000 6.27E4
c1 1.0000 17.0 0.0000 3.17E0

WL1T75: WL 1 temperature at 75 min
c61 0.5550 5.0 0.0000 3.44E5
c2 0.9176 0.0 0.0000 6.05E4
c1 1.0000 13.0 0.0000 2.60E0

SL1T75: SL 1 temperature at 75 min
c2 0.8947 2.0 0.0000 6.44E4
c1 0.9969 0.0 0.0000 1.86E3
c62 0.9987 3.0 0.0000 8.60E2
c71 1.0000 11.0 0.0000 1.72E0

a Variables listed in order of selection in stepwise process.
b Cumulative R2-value with entry of each variable into the model.
c Incremental degrees of freedom with entry of each variable into the

model.
d p-value associated with entry of each variable into the model.
e Predicted error sum of squares (PRESS) value for model; a deviation

from monotonically decreasing PRESS values indicates that the model
may be overfitting the data.
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WL1T75 were also obtained for WL1T25, SL1T25 and
SL2T75.

5.6. Step 6: approximate y for large random sample

A random sample

xi ¼ ½xi1; xi2; . . . ; xi;16�; i ¼ 1; 2; . . . ; nS; ð5:7Þ
ased computational strategy for the representation ..., Comput.
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Fig. 4. Comparison of observed values (i.e., y as indicated in Eq. (5.6)) and MARS response surface predicted values (i.e., ŷ as indicated in Eq. (5.6)): (a)
WL1T75, and (b) log(pF).
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of size nS ¼ 106 was generated from the possible values for
x in consistency with the distributions defined by the den-
sity functions in Eq. (5.3). The corresponding value ŷi for
yi was then estimated for each element of this sample with
the MARS approximations to WL1T25, WL1T75,
SL1T25, SL1T75 and log(pF) indicated in Tables 5 and
6. This created the mapping

½xi; ŷi�; i ¼ 1; 2; . . . ; nS ¼ 106; ð5:8Þ

for use in estimating evidence theory results for the ele-
ments of y.
884
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5.7. Step 7: approximate evidence space results

The approximation of evidence space results is illus-
trated for WL1T25, WL1T75, SL1T25, SL1T25 and
log(pF) for the construction of CCBFs, CCDFs and
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RCCPFs as indicated in Eqs. (2.22), (2.4) and (2.24). The

construction of CBFs, CDFs and CPFs is similar (see
Eqs. (2.21), (2.3) and (2.23)). For comparison, results were
obtained with both the MARS response surfaces for
WL1T75 and log(pF) and the actual values for WL1T75
and log(pF). Such a comparison would not be possible in
a real analysis with computationally demanding models
but is possible here because the example model/analysis is
inexpensive to evaluate.

The results for WL1T75 are shown in Fig. 5, with the
results obtained from the response surface approximation
shown in the left frame and the results obtained from the
actual model predictions shown in the right frame. The
outermost CCBFs and CCPFs in the two frames were
obtained with the most important variable (i.e., c61; see
Table 6) assigned its original evidence space and the
remaining variables assigned degenerate evidence spaces.
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Thus, these CCBFs and CCPFs were constructed from an
evidence space for x with 13 focal elements (see Table 3).
Then, the next inner CCBFs and CCPFs were obtained
with c61 and the next most important variable (i.e., c2; see
Table 6) assigned their original evidence spaces and the
remaining variables assigned degenerate evidence spaces,
with the result that the CCBFs and CCPFs are now being
constructed from an evidence space with 132 = 169 focal
elements. The process continues similarly with the addition
of c1 in the next iteration and the corresponding consider-
ation of an evidence space with 133 = 2197 focal elements.
The process stops at this point as c61, c2 and c1 are the only
variables identified as affecting WL1T75. The CCDFs that
result from the distribution defined by the density functions
in Eq. (5.3) are also shown in Fig. 5, with these CCDFs
appearing between the CCBFs and the CCPFs as should
be the case. As comparison of the left and right frames in
Fig. 5 shows, the CCBFs and CCPFs obtained from the
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MARS response surface approximation are effectively the
same as those obtained from the actual model predictions.

The evidence space results for WL1T25, SL1T25 and
SL1T75 are similar to those for WL1T75 (Fig. 6). The
results for WL1T25 and SL1T75 illustrate the negligible
changes in CCBFs and CCPFs that take place when vari-
ables that have little effect on the result of interest are
included in the construction process. As indicated in Table
6, c41 has little effect on WL1T25 and c62 has little effect on
SL1T75. As a result, their inclusion in the CCBFs and
CCPFs for WL1T25 and SL1T75, respectively, has little
impact on the estimates for these outcomes.

The results for log(pF) are shown in Fig. 7, with the
results obtained from the MARS response surface approx-
imation shown in the left frames and the results obtained
from the actual model predictions shown in the right
frames. The construction procedure is the same as previ-
ously illustrated in Fig. 5 for WL1T75. The pF axis is ter-
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Rminated at 10 �9 for two reasons. First, the original Latin

hypercube sample used in response surface construction
only resulted in values for pF down to 10�9.6; thus, values
for pF much less than 10�9 will involve results based on
extrapolation rather than interpolation. Second, it is diffi-
cult to give much credence to probabilities less than 10�9

other than to acknowledge that they are ‘‘small.’’ Because
of the small values associated with the CCBFs, results are
shown with both a linear scale (upper two frames) and a
log scale (lower two frames) on the ordinate (i.e., the belief,
probability and plausibility axis).

The constructions of the CCBFs and CCPFs in Fig. 7
sequentially involves 1–5 variables (i.e., c71; c2; c1; c72 and
c9 in sequence; see Table 5). The corresponding evidence
spaces have 13k, k = 1, 2, 3, 4, 5, focal elements, with
135 = 371,293 focal elements in the evidence space for x
when all five variables have their original evidence spaces
and degenerate evidence spaces are assigned to the remain-
ing variables. As indicated by the separation of the CCBFs
and CCPFs obtained for 4 and 5 variables, the CCBFs and
CCPFs in Fig. 7 are probably not fully converged to their
true values. This lack of convergence is consistent with the
Please cite this article in press as: J.C. Helton et al., A sampling-b
Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2006.10.049
MARS response surface for log(pF) with the indicated 5
variables having an R2-value of 0.83 (Table 5). Thus,
approximately 17% of the uncertainty in log(pF) is not cap-
tured by the response surface approximation in use.

One possibility is to continue the sequential construction
of CCBFs and CCPFs by adding a sixth variable (i.e., c42,
which would increase the R2-value for the MARS response
surface to 0.89; see Table 5). This would bring a inward
shift of the CCBFs and CCPFs but at the computational
cost associated with increasing the number of focal ele-
ments in the evidence space for x from 135 to
136 = 4,826,809. At this point, the sample of size
nS = 106 in Eq. (5.7) may not be sufficiently large to assure
adequate coverage of this many focal elements. In particu-
lar, there must be enough observations from each focal ele-
ment to provide an approximate estimate of the minimum
and maximum of the variable under consideration (i.e.,
log(pF) in this case) on each focal element. However, it is
important to recognize that the sample size does not neces-
sarily have to be substantially larger than the number of
focal elements when there is significant overlap of the focal
elements.
ased computational strategy for the representation ..., Comput.
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Several possibilities exist at this point. One is to con-
clude that an adequate bound on the location of the true
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CCBF and CCPF has been determined and that the analy-
sis can be terminated. In particular, the construction pro-
cess is ‘‘outside-in’’ in the sense that the true CCBF and
CCPF that results from a full consideration of the evidence
spaces for all elements of x will always lie inside the con-
structed CCBFs and CCPFs (see Section 7, Ref. [29]).
The preceding statement is conditional on two assump-
tions: (i) that the response surface in use is a ‘‘good’’
approximation to the result under consideration, and (ii)
that a sufficiently large sample has been used to obtain con-
verged estimates for the CCBF and CCPF for the reduced
evidence space.

Another possibility is to pay the computational cost and
keep adding variables until convergence is achieved. This
could result in having to increase the size of the sample
in Eq. (5.7). For log(pF), this could mean considering a
total of nine variables, which would bring the R2-value
for the MARS response surface approximation up to
0.96 (i.e., with inclusion of c71; c2; c1; c72; c9; c42; c8; c11; c10;
see Table 5). However, at the end of the analysis, this
entails considering an evidence space for x that involves
139 focal elements.
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Yet another possibility is to simplify the analysis by
reducing the complexity of the evidence spaces associated
with the elements of x. In particular, approximations to
the original evidence spaces can be defined that involve
fewer focal elements but still capture the general nature
of the original uncertainty characterization. This can be
done on the basis of focal elements defined by horizontal
lines drawn between the CPF and CBF for a variable
(Fig. 8). In particular, the horizontal lines in Fig. 8 can
be viewed as defining focal elements that correspond to
the intervals [0.0, 0.4], [0.0, 0.6], [0.2, 0.8], [0.4, 1.0] and
[0.6, 1.0] and have BPAs of 0.2. The result is a new and sim-
pler evidence space for the variable that now has 5 rather
than 13 focal elements. In general, the appropriate simpli-
fication would depend on the structure of the original evi-
dence space, the amount of desired or necessary
simplification, and the importance of the variable. In par-
ticular, it might be desirable to impose less simplification
on the more important variables and more simplification
on the less important variables.
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As an example, the analysis for log(pF) was carried out
with the evidence spaces for the individual components of x

redefined to have five focal elements as indicated in con-
junction with Fig. 8. This resulted in the need to consider
sequential evidence spaces for x with fewer focal elements
than used in the construction of the CCBFs and CCPFs
in Fig. 7 and, as a result, allowed the incorporation of
the effects of more components of x into the final CCBF
and CCPF for log(pF). Although the uncertainty in the
individual components of x has increased because of the
reduction of the number of focal elements from 13 to 5,
the estimated uncertainty in log(pF) has actually decreased
because of the use of more components of x in the con-
struction of the final CCBF and CCPF (i.e., compare final
CCBFs and CCPFs in Figs. 7 and 9). Thus, although con-
servative due to the reduction in the number of focal ele-
ments, the final CCBF and CCPF in Fig. 9 provides a
better representation of the uncertainty in log(pF) than
the final CCBF and CCPF in Fig. 7.

The results in Fig. 9 produced a surprise in that the effect
of c42 on the location of the CCPF is greater than its incre-
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c2; c11; c72; c9; c8 and c11: (a) construction with MARS response surface
d values for log(pF) (right frames).
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mental R2 value of 0.06 in the MARS response surface con-
struction would suggest (Table 5). Thus, there is not always
an exact correspondence between incremental R2 values
and shifts in the locations of CCPFs. For perspective,
Fig. 10 shows the results of a sequential construction of
CCBFs and CCPFs in which c42 is the second rather than
the sixth variable included the construction process. With
this change in the order of variable consideration, the
CCPFs now show a pattern of decreasing separation as
more variables are incorporated into the CCPFs.

The sequential construction of CCBFs and CCPFs can
be viewed a form of sensitivity analysis within the context
of an evidence theory representation of uncertainty. Specif-
ically, variable importance is indicated by the extent that
the CCBFs and CCPFs change when a variable is entered
into the construction process with its full evidence theory
representation.

6. Discussion

Evidence theory is a promising alternative to probability
theory for the representation of epistemic uncertainty when
limited information is available. With evidence theory, a
less structured representation of uncertainty is possible
than is the case with probability theory.

Evidence theory representations of uncertainty can be
interpreted in two different ways. With one interpretation,
an evidence theory representation of uncertainty can be
viewed as the specification of an incompletely defined prob-
ability space. With this interpretation, the belief associated
with a set is the smallest probability that must be assigned
to that set to complete the definition of the probability
space, and the plausibility associated with a set is the larg-
est probability that could be assigned to that set in a com-
pletion of the definition of the probability space. With the
other interpretation, evidence theory provides a structure
for reasoning under uncertainty. With this interpretation,
the belief associated with a set is a measure of the amount
of information that supports the truth of an assertion cor-
responding to the set, and the plausibility associated with a
set is a measure of the lack of information that contradicts
an assertion corresponding to the set.

Regardless of the interpretation, the mathematics of an
evidence theory representation of uncertainty is the same.
A particular challenge in this mathematics is the propaga-
tion of an evidence theory structure through a function
which is computationally expensive to evaluate.

This presentation has described a sampling-based com-
putational procedure for the propagation of an evidence
theory representation of uncertainty through a computa-
tionally expensive function (i.e., a numerically demanding
computer program). At the core of this procedure is the
use of Latin hypercube sampling and nonparametric
regression models to develop response surface approxima-
tions to analysis results of interest. This procedure provides
a means to propagate an evidence theory representation of
uncertainty through a function where more naı̈ve sam-
Please cite this article in press as: J.C. Helton et al., A sampling-b
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pling-based approaches will fail due to the high cardinality
of the evidence space. Further, the stepwise nature of the
propagation process provides sensitivity analysis results
that can be interpreted in the context of evidence theory.
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