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Summary. Numerous studies have linked ambient air pollution and adverse health outcomes.
Many studies of this nature relate outdoor pollution levels measured at a few monitoring sta-
tions with health outcomes. Recently, computational methods have been developed to model
the distribution of personal exposures, rather than ambient concentration, and then relate the
exposure distribution to the health outcome. Although these methods show great promise, they
are limited by the computational demands of the exposure model.We propose a method to alle-
viate these computational burdens with the eventual goal of implementing a national study of
the health effects of air pollution exposure. Our approach is to develop a statistical emulator for
the exposure model, i.e. we use Bayesian density estimation to predict the conditional exposure
distribution as a function of several variables, such as temperature, human activity and physical
characteristics of the pollutant. This poses a challenging statistical problem because there are
many predictors of the exposure distribution and density estimation is notoriously difficult in high
dimensions.To overcome this challenge, we use stochastic search variable selection to identify
a subset of the variables that have more than just additive effects on the mean of the exposure
distribution. We apply our method to emulate an ozone exposure model in Philadelphia.

Keywords: Air pollution; Bayesian non-parametrics; High dimensional data; Kernel stick
breaking prior; Stochastic computer models

1. Introduction

Numerous studies have linked ambient air pollution (e.g. ozone or particulate matter) and
adverse health outcomes (e.g. asthma, birth defects and mortality). Many studies of this nature
relate outdoor pollution levels measured at a few monitoring stations with counts of health
outcomes (e.g. Schwartz (1994) and Pope et al. (1995)). A limitation of this approach is that the
measurements from monitoring stations are used to represent the pollution exposure for every
person near the station. However, the amount of pollution that enters the body varies consid-
erably from person to person depending on the individual’s daily activity and living conditions.
As a result of ignoring this variation, the estimated association between ambient concentration
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and the health outcome often varies from location to location (Dominici et al., 2002; Fuentes
et al., 2006) or season to season (Lee and Shaddick, 2007) because human activity and living
conditions vary with space and time.

Ideally, daily personal exposure would be monitored for every subject in the study. How-
ever, this is usually cost prohibitive. An alternative is to model individual exposure by using
a computer simulation. For example, the Environmental Protection Agency has developed
a stochastic computer model called the air pollution exposure model, APEX (Binkowski and
Roselle, 2003). APEX generates a large number of hypothetical individuals to represent the pop-
ulation of interest. APEX then tracks the individuals through space and time to compute their
hourly exposure in various microenvironments (e.g. outdoors, indoors or in vehicle). Although
APEX does not actually measure exposures for these individuals, it uses information about
human activity patterns, census data, meteorology, housing information, physical properties
of the pollutant and diurnal pollution cycles to predict exposure. The simulated individuals
are used to estimate the population’s exposure distribution. This model has been compared and
validated by using observed exposure (e.g. US Environmental Protection Agency (2007)). Using
the stochastic model, we can replace the single ambient concentration predictor in the health
model with a summary of the exposure distribution; for example the mean or the percentage
of the exposures above a threshold could be used as predictors of the number of events in the
population on a given day. Also, for studies with individual health data, this approach may be
used to estimate each individual’s daily exposure by using the individual’s characteristics such
as type of housing and employment status.

Although it shows great promise, this stochastic simulation approach is computationally
expensive and as a result has only been used for local studies (Holloman et al., 2004; Shaddick
et al., 2008; Calder et al., 2008; Reich et al., 2009). There is great interest in extending this
methodology to the national level. This would require simulating the exposure of hundreds of
individuals for each geopolitical unit (e.g. county) and each day of the study (e.g. a few years),
which is infeasible with current computing power. In this paper, we propose a novel approach to
alleviating this difficulty; we develop a statistical emulator. An emulator is a statistical approx-
imation to a complex computer model. Ideally, the emulator should capture the important
features of the computer model and be able to predict a new observation in negligible comput-
ing time.

The goal of this paper is to develop an emulator for APEX to be used in a future health study.
Building an emulator for APEX poses two major challenges:

(a) APEX is a stochastic computer model and
(b) APEX has a large number of inputs.

Although our motivation is APEX, the approach that is developed here could be generalized to
other stochastic computer models with similar features, such as models for computer networks
(Waupotitsch et al., 2006) or vehicle traffic (Galli et al., 2009). Also, in the process of developing
the emulator, we study the environmental and demographic factors that affect exposure. APEX
is a complex stochastic non-linear model, and so it is not obvious which inputs are the most
influential. Simulation models are being used to study the effects of emission control strategies
on personal exposure. Therefore, providing a tool to test for complex relationships between the
inputs and the exposure distribution could be very useful in this context.

There is a rich literature about developing statistical emulators for complex computer model
output (e.g. Sacks et al. (1989) and Fang et al. (2006)). The vast majority of these methods
deal with deterministic computer models that return the same value for every run with the
same inputs. Typically the response surface is modelled by using non-parametric regression, e.g.
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splines or Gaussian processes (Sacks et al., 1989; Chen et al., 2006; Fang et al., 2006). As men-
tioned, developing an emulator for APEX is uniquely challenging because APEX is a stochastic
model in that the output is an entire exposure distribution, rather than a scalar. The literature on
statistical emulators for stochastic computer models is limited. Iooss et al. (2008) recently analy-
sed stochastic computer model output by modelling the distribution’s mean and variance using
generalized additive models (Hastie and Tibshirani, 1990). Although this may capture many
of the important features of the stochastic model, a more flexible model is certainly desirable.
For example, in APEX the covariates clearly affect the skewness of the exposure distribution;
see Section 5. Sufficiently modelling this tail behaviour could be crucial for the health analysis
if, say, the appropriate predictor for the health outcome was the proportion of the population
above a threshold.

We develop a Bayesian density estimation method to emulate APEX output. To do this, we
extend the kernel stick breaking model of Reich and Fuentes (2007) and Dunson and Park
(2008). The kernel stick breaking model specifies the conditional distribution of the outcome
given the predictors as a potentially infinite mixture of normal distributions, with the mean of
the Gaussian mixture components and the mixture probabilities dependent on the covariates.
This model is well suited for the APEX data because it allows not only the mean and variance but
also the skewness and all other properties of the distribution to vary smoothly across covariate
space. Thus, all of the important properties of the exposure distribution can be carried to the
health analysis.

A limitation of the kernel stick breaking approach, and all other density estimation methods,
is the so-called ‘curse of dimensionality’. To estimate the density at a given point, most density
estimates use data in a small window around the point (at least implicitly). For the APEX sim-
ulator there are approximately 20 inputs. Even with thousands of model runs, the amount of
data in any region of the 20-dimensional covariate space is too small to yield a reliable estimate
of the density. Therefore, despite the fact that all the inputs are used in the simulation model,
emulation may be improved by excluding inputs with small effects in favour of a parsimonious
statistical model.

We reduce the dimension of the covariate space by using Bayesian variable selection. Bayesian
variable selection for simple linear regression is a well-studied problem (e.g. George (2000)). In
simple linear regression the covariates affect only the mean response and appear in the mean
only as a linear combination. A more flexible approach is non-parametric regression which
allows the mean to be a smooth surface in covariate space. There are several methods for vari-
able selection in this context (Shively et al., 1999; Gustafson, 2000; Wood et al., 2002; Linkletter
et al., 2006; Reich et al., 2008). However, these approaches still only model the mean response
and thus ignore important effects from variables that affect the variance or higher moments.

In this paper we propose a variable selection method that not only searches for mean effects
but also more generally aims to identify variables with any effect on the conditional distribu-
tion of the response. Chung and Dunson (2009) recently proposed to perform variable selection
within the stick breaking framework via a probit link. We separate variable selection into two
pieces. Covariates are selected to enter the model as

(a) a linear term affecting the mean of the response and/or
(b) a term in the kernel stick breaking density used to model the residual exposure distribution.

This separation is crucial to alleviating the curse of dimensionality because most of the pre-
dictors in APEX indeed affect the exposure distribution. However, the effect from most of the
predictors can be modelled effectively as a linear change in the mean, leaving a manageable
number of variables for residual density estimation.
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We also illustrate how our variable selection method can be used as an exploratory tool.
With a large number of covariates, searching for non-standard effects such as non-linear mean
relationships, variance inflation, missing interactions and increased tail probability is very
challenging. Our simulation study shows that the kernel stick breaking model is effective at
identifying these relationships. Therefore, our approach is to begin with a linear, main-effects-
only model, and then to conduct further exploration for the subset of variables included in
the mixture of normals component of the conditional density model. For example, there are
an exorbitant number of plausible interactions for the APEX data so including them all in the
candidate pool would be overwhelming. Our main-effects-only model identifies four variables
as having non-standard effects. Refitting with the six two-way interactions between these four
predictors reveals several statistically significant and scientifically meaningful interactions.

The paper proceeds as follows. Section 2 describes APEX and the simulated data and Section
3 develops the statistical emulator. A brief simulation study in Section 4 illustrates the flexibility
of our non-parametric model. We analyse APEX output in Section 5. Section 6 concludes.

2. Data description

In this section we give a brief description of APEX; a full description can be found at http://
www.epa.gov/ttn/fera/apex_download.html. In Section 5 we analyse ozone expo-
sure, although the model below can be used for other pollutants such as carbon monoxide or
particulate matter. APEX estimates the population distribution of exposures by simulating per-
sonal exposures for hypothetical individuals chosen to represent the study population in terms
of age, gender, employment, housing volume, smoking status, etc. The activities of the hypothet-
ical individuals are generated by randomly selecting a diary from the Environmental Protection
Agency’s consolidated human activity database. This database contains personal diaries of over
22 000 individuals from exposure studies conducted around the USA. The diaries describe the
activity pattern of the individual throughout the day and are selected to match the hypothetical
individuals on the basis of personal characteristics, season, day of the week and average daily
temperature.

APEX tracks the individuals throughout the day and computes their hourly exposure on the
basis of the hourly ambient concentration and individuals’ current environment. APEX com-
putes exposure for several environments, including residence, bars and restaurants, schools, day
care centres, offices, shopping centres, outdoors and vehicles. The exposure for an individual
on a given day is then

E=
24∑

h=1

N∑
j=1

Chjthj=24, .1/

where N is the number of environments in the simulation, Chj is the concentration in environ-
ment j at hour h, and thj is the time spent in environment j during hour h. The concentration
Chj in the indoor environments is computed by using the differential equation

dChj

dt
=AERj Å.Cambient

h −Chj/−DRÅCjk +Csource
hj , .2/

where AERj is the air exchange rate for environment j, Cambient
h is the outdoor concentration

during hour h, DR is the decay rate and Csource
hj is the added concentration due to point sources in

environment j, e.g. cooking. The three terms in equation (2) represent respectively the transport
of material in and out of the environment, removal of a pollutant from the microenvironment
due to deposition, filtration and chemical degradation, and emissions from sources of a pollu-
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tant inside the microenvironment. The concentration in the outdoor microenvironment is taken
to be Chj =Cambient

h . Since we are interested in exposure to outdoor pollution, we exclude the
third term.

To demonstrate our method, we use APEX to generate 5000 ozone exposure observations for
residents in the City of Philadelphia in the summer (June–August) of 2001. The inputs include
daily temperature and hourly ambient ozone in 498 districts; hourly ozone levels are modelled
by using the deterministic CMAQ model (Binkowski and Roselle, 2003). The characteristics
of the individuals are generated according to census variables such as age, race and gender
distribution, which are freely available for major metropolitan areas. AERj- and DR-values
are drawn for each subject from the default uncertainty distributions to represent a reasonable
range of values and are held constant throughout the day for each subject. We use the individ-
ual-specific AERj and DR as predictors for exposure. We also use as a predictor the physical
activity index, i.e. the time-averaged metabolic equivalent of task over the day, as a one-number
summary of the physical activity diary. In many settings these predictors may not be known
exactly. However, we include them to study the model’s sensitivity to these factors. The resulting
emulator could still be used in the absence of these variables by placing an uncertainty distribu-
tion on them and calculating the marginal exposure distribution by using numerical integration
over the conditional distribution that is developed in Section 5, or by simply refitting with, say,
the mean and variance of the uncertainty distributions as predictors.

3. Variable selection for Bayesian density estimation

In this section we propose a fully Bayesian method for variable selection in non-parametric
density estimation. Our method builds on the kernel stick breaking model which we describe
in Section 3.1. Section 3.2 proposes a stochastic search variable selection model to search for
important subsets of the predictors to describe the conditional density of the outcome. In
Section 3.3 we make recommendations for how to use the density estimates in a future health
study. Computing details are given in Section 3.4.

3.1. Kernel stick breaking model
The kernel stick breaking model is an extension of the ordinary stick breaking model of
Sethuraman (1994), which we describe below. For general Bayesian modelling, the stick break-
ing prior offers a way to model a distribution as an unknown quantity to be estimated from the
data. The stick breaking prior for the unknown distribution F is the infinite mixture of normal
distributions

F
D=

∞∑
k=1

pk N.μk,σk/, .3/

where pk are the mixture probabilities and N.μ,σ/ is the normal density with mean μ and stan-
dard deviation σ. The mixture probabilities ‘break the stick’ into an infinite number of pieces
so the sum of the pieces is 1, i.e. Σ∞

k=1pk =1. This constraint is satisfied stochastically by intro-
ducing latent variables vk ∼IID beta.1, D/, where D > 0 is a hyperparameter. The first mixture
probability is modelled as p1 =v1. Subsequent mixture probabilities are

pk =vk

(
1−

k−1∑
j=1

pj

)
=vk

k−1∏
j=1

.1−vj/, .4/
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where 1 −Σk−1
j=1pj is the probability not accounted for by the first k − 1 mixture components,

and vk is the proportion of the remaining probability assigned to the kth component.
The kernel stick breaking model allows the density of the response y to depend on the predic-

tors x = .x1, . . . , xp/′. We assume that the response is scaled to have mean 0 and unit variance.
Let

y =x′β+ " "∼F."|x/, .5/

where β is the vector of regression coefficients in the linear mean. Following Reich and Fuentes
(2007) and Dunson and Park (2008), the conditional distribution of " given x is modelled as the
infinite mixture

F."|x/=
∞∑

k=1
pk.x/ N.μk,σk/, .6/

where pk.x/ are the mixture weights with Σ∞
k=1p.x/=1 for all x. The means and variances have

priors μk ∼IID F0 and σk ∼IID U.0,σmax/ respectively. The kernel stick breaking weights allow
the density to be different in different regions of the covariate space. These densities are tied
together by the base distribution F0. We take the base distribution to be μk ∼IID N.0, τ /, where
τ is a hyperparameter to be estimated by the data.

The mixture probabilities vary with x through a series of kernel functions wk.x/∈ [0, 1]. The
mixture probabilities are p1.x/=v1 w1.x/ and

pk.x/=vk wk.x/
k−1∏
j=1

{1−vj wj.x/} .7/

for k > 1. Here Πk−1
j=1{1 − vj wj.x/} is the proportion of the stick attributed to the first k − 1

terms and vk wk.x/ is the proportion of the remaining stick attributed to component k for an
observation with covariates x. Since in most cases y’s density is a fairly smooth function of x,
we use squared exponential kernels (although other kernels are possible), i.e.

wk.x/= exp{−.x −ψk/′Σ.x −ψk/}, .8/

where ψk = .ψk1, . . . ,ψkp/′ is the kernel’s centre and Σ is the p × p matrix that controls its
spread and shape. To facilitate prior specification, we scale the predictors so that xj ∈ [0, 1]
for j = 1, . . . , p and then assume that the knots have priors ψkj ∼IID U.0, 1/. As before vk ∼IID

beta.1, D/.
In equation (6), the conditional mean and variance of y are

E.y|x/=μ.x/=x′β+
∞∑

k=1
pk.x/μk, .9/

V.y|x/=σ2.x/=
∞∑

k=1
pk.x/

[
σ2

k +
{
μk −

∞∑
l=1

pl.x/μl

}2]
: .10/

Therefore, although the parametric portion of the mean model is simply x′β, the kernel stick
breaking model for the mean can accommodate more complicated mean structures, such as
non-linearity and interaction effects. Also, as shown by equation (10), varying the probabilities
with x gives a rich class of models for the variance and higher moments of y as a function of x.

3.2. Bayesian variable selection
We perform variable selection separately on the parametric mean x′β and the residual distri-
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bution F."|x/. In both cases we use stochastic search variable selection. Following George and
McCulloch (1993, 1997), let

βj =π1jθj,

where π1j ∼ Bern(0.5) and θj ∼ N(0,σ2
θ ). If π1j = 0 then βj = 0 and xj is removed from the

parametric mean. In contrast, if π1j = 1, xj is included and its coefficient βj = θj has a vague
normal prior. The posterior mean of π1j represents the posterior probability that the linear
mean depends on xj.

For the non-parametric component, we assume that Σ is diagonal with diagonal elements
α1, . . . ,αp. Defining ρj = exp.−αj/, equation (8) can be written

wk.x/=
p∏

j=1
ρ

.xj−ψkj/2

j : .11/

Variable selection is performed by giving ρj prior mass at 1; if ρj = 1 then xj does not appear
in the kernels wk.x/ and thus xj does not appear in F."|x/. This interpretation also holds for
binary covariates. The log-ratio of the weight for term k for xj = 1 compared with xj = 0 is
2. 1

2 −ψkj/ log.ρj/. Therefore, the stick breaking weights vary by xj if and only if ρj is less
than 1, and the knot ψkj controls the value of xj that is favoured by term k.

We assume that
ρj =1−π2jγj, .12/

whereπ2j ∼ Bern(0.5) and γj ∼IIDU.0, 1/. Ifπ2j =0 then ρj =1 and xj is removed from the model
for the residual distribution. If π2j =1 then ρj < 1 and xj is included in the residual model.

3.3. Incorporating the exposure distribution in a future health model
In this section we suggest how the exposure distribution could be used in a future health study.
Here we focus on time series analysis of count data. Denote the zt as the number of events in
a given region on day t, and Ct as the ambient concentration on day t, or perhaps day t − l

for some lag l. A natural model for the counts is zt ∼ Poisson{λt exp.βCt/}, where λt includes
population size and confounders such as meteorology and time trends.

One approach would be to replace the ambient concentration with an estimate of the mean
of the exposure distribution, e.g. the posterior median of equation (9). Although there may be
some value in using the exposure simulator to provide an improved one-number summary of
exposure compared with ambient concentration, we feel that a greater contribution is to model
the entire exposure distribution of the population, and to use this distribution as a functional
predictor. If the exposure eti for each member of the population of interest was known, we might
model the expected number of events as Σiλt exp.βeti/. To approximate this sum, Reich et al.
(2009) assumed that the exposure distribution on day t, qt.e/, is Gaussian with mean μt and
standard deviation σt , and the expected number of events becomes proportional to∫

λt exp.βe/qt.e/de=λt exp.μtβ+σ2
t β

2/: .13/

In addition, they accounted for uncertainty in the exposure distribution by placing priors (de-
rived from several model simulations) on μt and σt .

A similar approach could be taken for a non-Gaussian exposure distribution. The emulator
proposed is a mixture of normal distributions, and the integral in equation (13) for the expected
counts can be conveniently expressed as

λt

∑
k

pkt exp.μktβ+σ2
ktβ

2/, .14/
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where pkt , μkt and σkt are the mixture weight, mean and standard deviation for the kth mixture
component. Alternatively, it is possible to approximate the convolution integral in equation
(13) by using, say, the quintiles of the exposure distribution q1t , . . . , q5t , i.e.

λt

∑
k=1

exp.qktβ/, .15/

where q1t , . . . , q5t have priors based on several model simulations.
The analysis would proceed similarly for a study with individual level data. A common model

for individual binary responses, yi, is the logistic regression model logit{P.yi =1/}=β0 +β1Ei,
where Ei is the exposure for subject i. In this case, Ei would be taken to be unknown, with
the APEX exposure distribution as its prior. This errors-in-covariates model would account for
both uncertainty in the exposure distribution, as well as uncertainty in the exposure of each
individual relative to this distribution.

3.4. Computational details
Markov chain Monte Carlo (MCMC) sampling is carried out in R (R Development Core Team,
2006). To facilitate MCMC sampling, we introduce latent group indicators g1, . . . , gn and refor-
mulate model (6) as

yi|gi ∼N

(
p∑

j=1
xijπ1jθj +μgi ,σgi

)
, .16/

gi ∼ categorical{p1.x.i//, p2.x.i//, :::}, .17/

where x.i/ is the vector of predictors for observation i. The mean parameters π1j and θj

have conjugate priors and are updated individually by using Gibbs sampling. Given N =
max{g1, . . . , gn}, we need to update .μk,σk, vk/ only for k = 1, . . . , N. The remaining terms do
not enter the posterior except through their priors. The μk are updated by using Gibbs sampling
and σk and vk are updated individually by using Metropolis sampling with Gaussian candidate
distributions. Candidates with zero probability are simply rejected. The variable indicators π2j

are updated separately by using Gibbs sampling.
The group indicators gi are also updated by using Metropolis sampling. Candidates gi are

generated from the prior gi ∼categorical{p1.x.i//, p2.x.i//, :::}. Following Papaspiliopoulos and
Roberts (2008), we generate the candidate by first drawing w ∼U.0, 1/. If w <ΣN

l=1pl.x.i//, we
take min{g|w <Σg

l=1pl.x.i//} as the candidate. If w �ΣN
k=1pk.x.i//, we increase N , drawing the

corresponding .μN ,σN , vN/ from their priors, until w <ΣN
l=1pl.x.i//, and use the new N as the

candidate for gi.
An alternative sampling approach is to replace model (6)’s infinite mixture with a finite mixture

of m components by defining the probability for the mth term as pm.x.i// = 1 −Σm−1
j=1 pj.x.i//

for all i. We use this alternative approach with m=50 for the analysis in Section 5. To monitor
the validity of this approximation, we inspect the posterior samples of pm.x.i//. For these data,
the posterior mean of pm.x.i// is less than 0.001 for all i.

The MCMC algorithm for the full model with n=5000 responses in Section 5 runs in a few
hours on an ordinary personal computer. APEX runs for Philadelphia required several days
of computing. In addition to this difference, the advantage of an emulator is that it should be
possible to run the full APEX model and MCMC emulation algorithm on a subset of days
and locations, and then immediately to extrapolate to the complete data set by using the esti-
mated exposure distribution, making a national study feasible. Extrapolation to new locations
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will become more complicated as APEX incorporates more local features such as commuting
patterns and land use variables.

4. Simulation study

We conduct a brief simulation study to evaluate the ability of the kernel stick breaking model
to identify several types of non-standard features in the data. We simulate data under five
designs, which are described in Sections 4.1–4.5. Each design has n = 200 observations and
p = 10 covariates x1, . . . , x10 generated independently from the U.0, 1/ distribution. We com-
pare three models which are all special cases of Section 3’s full kernel stick breaking model as
follows:

(a) model 1, a linear regression model with normal errors, F."|x/=N.0,σ/ in equation (5);
(b) model 2, a linear regression model with non-parametric errors, wj.x/= 1 for all j and x

in equation (7) so F."|x/=F."/;
(c) model 3, a full kernel stick breaking model.

Model 1 is the usual Gaussian linear regression model. Model 2 is more flexible because it does
not assume that the residuals are Gaussian. However, model 2’s residual distribution does not
depend on x, so the effect of x is linear in the mean and the covariates do not affect the higher
moments.

For each design we generate S = 50 data sets. For each simulated data set and each of the
models we compute each covariate’s linear mean inclusion probability (P.βj �= 0|y/) and its
kernel bandwidth inclusion probability (P.ρj < 1|y/). Table 1 gives the mean (with standard
deviation in parentheses) of the S inclusion probabilities for each model and each covariate.

We use a vague, yet proper, prior for the hyperparameters. We take σmax =10, D∼gamma(0.1,
0.1) and τ−2 ∼gamma(0.1,0.1), where the gamma priors are parameterized to have mean 1 and
variance 10. We assume that the prior standard deviation of the regression parameters in the
linear mean is σθ =10.

4.1. Linear model
The first design is the usual parametric linear model with

y =2:5x1 +2:0x2 +1:5x3 +1:0x4 +0:5x5 + ",

where " has a standard normal distribution. The results for this simulation are given in Table 1,
part (a). As expected, the Gaussian linear model (model 1) identifies the highest proportion of
the truly important linear regression coefficients. However, the non-Gaussian models (models
2 and 3) give nearly identical inclusion probabilities, so it seems that the added flexibility in the
residual distribution leads to only a small sacrifice in variable selection for Gaussian data.

On average, the inclusion probabilities for the unimportant linear regression coefficients
(variables 6–10) are around 0.05 for all three methods. The inclusion probabilities for these
variables exceed 0.5 for at most one of the 50 data sets, so the type I error is even less than 0.05
(assuming that a variable is deemed important if it is included with probability higher than 0.5).
Model 3 also performs variable selection for the residual density estimation. In this case none of
the predictors should be included in the kernel stick breaking portion of the model. The average
probability that variables are included in the stick breaking portion of the model (i.e. P.ρj <1/)
is around 0.25, and these probabilities exceed 0.50 less than 5% of the time (the results are not
shown). It appears that the Bayesian model is well calibrated.
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Table 1. Means (and standard deviations in parentheses) of the posterior
inclusion probabilities for the simulation study†

Variance Linear mean parameters, βj Kernel bandwidths,
ρj , model 3

Model 1 Model 2 Model 3

(a) Design 1: Gaussian linear model
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.26 (0.10)
2 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.26 (0.10)
3 1.00 (0.00) 1.00 (0.06) 0.97 (0.16) 0.27 (0.15)
4 0.87 (0.21) 0.87 (0.23) 0.83 (0.27) 0.30 (0.16)
5 0.33 (0.37) 0.32 (0.37) 0.30 (0.34) 0.26 (0.12)
6–10 0.05 (0.05) 0.05 (0.06) 0.06 (0.08) 0.24 (0.09)

(b) Design 2: heteroscedastic model
1 0.97 (0.12) 0.98 (0.11) 0.98 (0.06) 0.26 (0.10)
2 0.98 (0.06) 0.98 (0.09) 0.99 (0.06) 0.23 (0.07)
3 0.97 (0.13) 0.96 (0.12) 0.74 (0.38) 0.68 (0.28)
4 0.04 (0.07) 0.03 (0.03) 0.04 (0.07) 0.51 (0.27)
5–10 0.05 (0.08) 0.04 (0.07) 0.05 (0.08) 0.22 (0.06)

(c) Design 3: non-linear model
1 0.69 (0.34) 0.66 (0.35) 0.61 (0.40) 0.28 (0.12)
2 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.20 (0.16)
3 0.10 (0.18) 0.11 (0.20) 0.12 (0.21) 0.93 (0.20)
4–10 0.07 (0.09) 0.07 (0.10) 0.08 (0.12) 0.22 (0.07)

(d) Design 4: interaction model
1 1.00 (0.00) 1.00 (0.00) 0.94 (0.21) 0.44 (0.28)
2 0.10 (0.17) 0.10 (0.17) 0.10 (0.20) 0.60 (0.26)
3–10 0.06 (0.08) 0.06 (0.08) 0.07 (0.11) 0.12 (0.09)

(e) Design 5: higher order model
1 1.00 (0.00) 1.00 (0.00) 1.00 (0.00) 0.26 (0.10)
2 0.84 (0.29) 0.91 (0.23) 0.94 (0.18) 0.28 (0.13)
3 0.05 (0.28) 0.13 (0.24) 0.11 (0.15) 0.94 (0.16)
4–10 0.05 (0.07) 0.04 (0.07) 0.04 (0.05) 0.27 (0.10)

†For the linear mean parameters we report the mean and standard deviation of P.βj �=
0/ and for the kernel stick breaking parameters we report the mean and standard devi-
ation of P.ρj < 1/. The models are 1, the parametric linear regression model, 2, the
linear regression model with non-Gaussian errors, and 3, the full kernel stick breaking
model.

4.2. Heteroscedastic model
The heteroscedastic model is

y =x1 +x2 +x3 + .x3x4 +0:5/",

where " has a standard normal distribution. In this model x3 affects both the mean and the
variance. Note that in Table 1, part (b), model 3 regularly includes x3 in both the mean (the
average inclusion probability is 0.74) and in the kernel stick breaking (the average inclusion
probability is 0.68) portions of the model. The fourth variable appears only in the variance,
and model 3 includes this covariate more often in the mixture model than the linear mean. The
effect of x4 is completely ignored by models 1 and 2.
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4.3. Non-linear model
The third simulation design is

y =x1 + log.x2/+10.x3 −0:5/2 + ",

where " has a standard normal distribution. In this design, x2 and x3 both have non-linear
relationships with the outcome. The kernel stick breaking model can identify x3’s non-linearity.
The average inclusion probability for x3 in the residual distribution is 0.93. However, in the
range x2 ∈ .0, 1/, log.x2/ is only slightly non-linear and the kernel stick breaking model prefers
to include x2 in only the linear mean term. The average inclusion probability for x2 in the residual
distribution is only 0.20, so the model cannot detect this non-linear relationship.

4.4. Interaction model
The interaction model is

y =2x2 I.x1 < 0:5/−2x2 I.x1 > 0:5/+ ",

where " has a standard normal distribution. Although this density is discontinuous in covariate
space, we hope to show that our model is sufficiently flexible to accommodate this deviation
from the assumptions. None of the three models contain the interaction between x1 and x2 in
their parametric mean term. All the models can identify the main effect for x1, but x2 is rarely
included in the mean term because its effect is only apparent conditioned on x1. Model 3 can
accommodate the missing interaction in the residual model; on average x2 is included in the
residual distribution with probability 0.60.

4.5. Higher order model
The final simulation design is

y =2x1 +x2 + I.x3 < 0:5/U + I.x3 > 0:5/t2:5=
√

5

where U has a U.−0:5
√

12, 0:5
√

12) distribution and t2:5 has t-distribution with 2.5 degrees of
freedom. In this simulation the errors are not Gaussian and model 1’s assumptions are violated.
As a result, the semiparametric linear model’s (model 2) inclusion probabilities for the param-
eters in the linear mean (x1 and x2) are higher on average than in the parametric model. This
design deviates from the usual linear model because the residual distribution’s tail behaviour
(but not its mean, variance or skewness) depends on x3. The average inclusion probability for x3
in model 3’s residual distribution is 0.94. Also, the kernel stick breaking model which correctly
characterizes the residual distribution’s dependence on x3 has the highest average inclusion
probabilities for x1 and x2 in the linear mean.

We also repeated the final simulation design with correlated predictors. We generated Gaussian
variables zj with mean 0 and auto-regressive correlation cov.zj, zk/= 0:7|j−k|, and then trans-
formed the predictors to the unit interval by using the probit link xj =Φ.zj/, where Φ is the
standard normal distribution function. The inclusion probabilities in the linear mean for x1 and
x2 changed from 1.00 and 0.94 with uncorrelated predictors to 1.00 and 0.73 with correlated
predictors, and the inclusion probability for x3 is the kernel bandwidth changed from 0.94
with uncorrelated predictors to 0.91 with correlated predictors. The inclusion probabilities for
the other predictions were similar to the uncorrelated predictors case. As with most variable
selection methods, the results were quite sensitive to collinearity. However, even with moderate
correlation the method remains fairly effective.
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In summary, this simulation study shows that the kernel stick breaking model is very
competitive with the parametric model even when the data are generated from a Gaussian
linear model. The kernel stick breaking model is also effective at identifying several types of
effects, including non-linear mean relationships, variance inflation, missing interactions and
increased tail probability. Simulation design 5 also demonstrates that properly modelling the
residual distribution can improve the likelihood of selecting important predictors in the linear
mean.
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Fig. 1. Plots of the APEX data: (a) average daily exposure versus daily average ambient concentration; (b)
log-ratio of exposure to ambient concentration

Table 2. Posterior summaries for the main effects model†

Parameter Overall inclusion Linear term βj Kernel bandwidths
probability P(ρ< 1)

P(βj �=0) 95% interval

Weekend 1.00 1.00 (0.06, 0.10) 0.05
Physical activity index 1.00 1.00 (0.30, 0.50) 0.22
Temperature 1.00 0.00 (0.00, 0.00) 1.00
Ambient concentration 1.00 1.00 (−0.20, −0.10) 0.15
No air-conditioning in home 1.00 0.01 (0.00, 0.00) 1.00
Gender (male ≡ 1) 1.00 1.00 (0.10, 0.15) 0.04
Employed 1.00 0.01 (0.00, 0.00) 1.00
Age �4 years 0.37 0.32 (−0.11, 0.00) 0.06
Age 5−18 years 0.12 0.00 (0.00, 0.00) 0.12
Age � 65 years 0.04 0.00 (0.00, 0.00) 0.04
AER residence 1.00 1.00 (0.47, 0.77) 1.00
AER bar or restaurant 0.08 0.00 (0.00, 0.00) 0.08
AER school × age 5–18 1.00 1.00 (0.17, 0.34) 0.06
AER child care × age �4 0.06 0.01 (0.00, 0.00) 0.05
AER office × employed 1.00 1.00 (0.21, 0.41) 0.05
AER shop 0.04 0.00 (0.00, 0.00) 0.04
Decay rate 1.00 1.00 (−0.19, −0.08) 0.07

†‘Overall inclusion probability’ is the probability that the variable is included in the mean or residual model
component (i.e. βj �=0 or ρ< 1).
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Fig. 2. Estimated moments of the log-exposure ratio by four important covariates ( , no air-condition-
ing; - - - - - - - , employment; , temperature; – – –, AER-residual): (a) mean; (b) standard deviation; (c)
skewness

5. Analysis of the APEX data

To illustrate the method proposed, we use the data that were described in Section 2 to build a
statistical emulator for personal ozone exposure. We analyse n=5000 simulated exposures, using
the same priors as in Section 4. Fig. 1(a) plots the average daily exposures against the ambient con-
centrations. Although exposure generally increases linearly with ambient concentration, there is
considerable variation in the ratio of exposure to ambient concentration due to human activity
patterns and other factors that were discussed in Section 2. To account for the natural multipli-
cative relationship between concentration and exposure, we analyse the logarithm of the ratio of
exposure to ambient concentration, plotted in Fig. 1(b). The log-ratio is slightly left skewed.

Table 2 gives the inclusion probabilities from fitting the full kernel stick breaking model
with the main effects linear trend. Six predictors are included (in either the mean and residual
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models, ‘Overall inclusion probability’) with probability less than 0.5: air exchange rates in bars
or restaurants, child care facilities and shopping centres, and the three dummy variables for age.
These variables are in fact included in the stochastic exposure model and certainly play some
role in the simulation. However, it appears that their effects are not sufficiently large to warrant
the added model complexity. Excluding these variables from the emulator provides a simpler
model in terms of both mathematical and practical complexity, as less data must be collected
to emulate APEX.

Several predictors are included in the linear mean but not residual distribution models. These
predictors are adequately modelled by using simple linear regression. The exposure ratio is
higher for males and on weekends. The exposure ratio also has the expected relationships
with physical activity, ozone decay rate and the air exchange rates for schools and offices.
Ambient concentration is included with probability 1 and its posterior median coefficient is
−0.15. Ambient concentration is also included as a fixed offset, so this reflects the known
non-linear relationship between exposure E and ambient concentration C,

E∝C exp.−0:15C/: .18/

The model identifies air-conditioning in the home, temperature, employment status and
residential air exchange rate as important predictors with non-standard effects. These vari-
ables are all included in the stick breaking component of the model with probability near 1. To
illustrate how the exposure distribution depends on each of these variables, Fig. 2 presents the
mean, standard deviation and skewness of the exposure distribution for a range of values for
these three covariates. To create this plot for one covariate, all other covariates are fixed at their
medians (rather than means, since many of the covariates are binary), and the moments are
calculated on a grid of values for the covariate of interest by using formulae such as equation
(9). The moments for the binary variables air-conditioning and employment status are calcu-
lated only at the end points and, for comparative purposes, all covariates are scaled to the unit
intervals.

Fig. 2 shows that residential air exchange rate has the most dramatic effect on the exposure
distribution. The strong relationship between residential air exchange rate and exposure is also
apparent in Fig. 3(a)’s plot of the raw data. As the residential air exchange rate increases, the
mean exposure increases because more ozone penetrates into the residence. The mean function
is non-linear and plateaus when the air exchange rate reaches 3 (scaled to about 0.5 in Fig. 2).
Fig. 2 also shows that the standard deviation decreases with air exchange rate. With a large
exchange rate the variability due to human activity becomes less relevant because the indoor
and outdoor environments have similar ozone levels. Residential air exchange rate also has
a dramatic effect on the skewness of the exposure distribution. The posterior mean densities
in Fig. 3(b) are all left skewed since density is essentially bounded at zero because exposure
rarely exceeds the ambient concentration. The right-hand tail is more compressed for large air
exchange rates because more mass is near the upper bound.

Employment status affects both the mean and the variance of the outcome; the sample mean
(with standard deviation in parentheses) of the log-exposure ratio is −1.26 (0.47) for employed
people and −1.22 (0.51) for unemployed people. Fig. 4 shows that employment status also affects
the shape of the distribution. Both densities in Fig. 4 are skewed to the left, but the unemploy-
ment density has more mass near zero and thus a higher probability of exposure approaching the
ambient concentration. It may be that unemployed people are more likely to spend considerable
time outdoors.

Residential air-conditioning is thought to be a major driver of the exposure model and is
currently the subject of research at the Environmental Protection Agency. It is believed that
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Fig. 4. Data versus posterior mean conditional density for exposure for (a) unemployed and (b) employed
people

people with air-conditioning are exposed to less ozone because the air-conditioning system
filters the ozone and prevents the outdoor ozone from penetrating the home. Indeed, for these
data the mean response is larger for people without ( −1.02) than with (−1.27) air-conditioning.
Surprisingly air-conditioning is not included in the linear mean term (Table 2). Air-conditioning
is, however, included in the stick breaking component of the model with probability 1, but
Fig. 2 shows that with the other predictors fixed at their medians air-conditioning has a positive
effect on the mean response. The simulation in Section 4.4 illustrates that the kernel stick
breaking model can be used to identify missing interactions, and the conflicting results for
air-conditioning suggest that interactions should be added to our model.

Table 3 gives the inclusion probabilities for the model that includes all two-way interactions
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between the four variables identified as having non-standard effects (air-conditioning, employ-
ment status, temperature and residential air exchange rate). These effects are added to the linear
mean model only; thus the kernel stick breaking model is the same as the previous fit. Two of
the six interactions are included with probability greater than 0.5. We note that the non-sig-
nificant interactions in the mean do not necessarily imply additive effects for these predictors
because of potential non-linearity in the kernel stick breaking residual component. Residential
air exchange rate interacts in the linear mean with air-conditioning and employment status;
residential air exchange rate has less effect for homes with air-conditioning because air-condi-
tioning prevents ozone from penetrating, and residential air exchange rate has less effect for
employed people because they spend less time in their residences. Including these interactions
reduces the probability that employment status is included in the kernel stick breaking portion
of the model from 1.00 to 0.82.

Despite the addition of the interactions, temperature and air-conditioning remain in the
kernel stick breaking portion of the model with probability 1.00. Fig. 5(a) plots the response
by temperature and air-conditioning status. The effect of air-conditioning is the strongest (on
the mean and variance) when the temperature is between 70 and 80 ◦F. People without air-
conditioning are most likely to open their windows in this temperature range, creating the
greatest contrast between the two groups. The effect on air-conditioning is smaller for very high
temperatures because people without air-conditioning may close both windows and blinds to
stay cool. The kernel stick breaking model identifies this complicated relationship between expo-

Table 3. Posterior summaries for the model with interactions†

Parameter Overall inclusion Linear term βj Kernel bandwidths
probability P(ρ< 1)

P(βj �=0) 95% interval

Weekend 1.00 1.00 (0.06, 0.11) 0.05
Physical activity index 1.00 1.00 (0.29, 0.48) 0.13
Temperature 1.00 0.30 (−0.33, 0.00) 1.00
Ambient concentration 1.00 1.00 (−0.21, −0.12) 0.25
No air-conditioning in home 1.00 1.00 (0.14, 0.31) 1.00
Gender (male≡1) 1.00 1.00 (0.10, 0.15) 0.02
Employed 0.82 0.00 (0.00, 0.00) 0.82
Age �4 years 0.63 0.61 (−0.25, 0.00) 0.03
Age 5–18 years 0.04 0.01 (0.00, 0.00) 0.03
Age � 65 years 0.31 0.01 (0.00, 0.00) 0.31
AER residence 1.00 1.00 (0.63, 0.99) 1.00
AER bar or restaurant 0.09 0.04 (−0.04, 0.00) 0.05
AER school × age 5–18 1.00 1.00 (0.20, 0.37) 0.05
AER child care × age �4 0.61 0.59 (0.00, 0.30) 0.03
AER office × employed 1.00 1.00 (0.24, 0.44) 0.04
AER shop 0.04 0.00 (0.00, 0.00) 0.04
Decay rate 1.00 1.00 (−0.19, −0.08) 0.06
Temperature × no air-conditioning 0.03 0.03 (0.00, 0.00) 0.00
Temperature × employed 0.49 0.49 (−0.19, 0.00) 0.00
Temperature × AER residence 0.30 0.30 (0.00, 0.72) 0.00
No air-conditioning × employed 0.01 0.01 (0.00, 0.00) 0.00
No air-conditioning × AER residence 1.00 1.00 (−0.59, −0.26) 0.00
Employed × AER residence 0.57 0.57 (−0.26, 0.00) 0.00

†‘Overall inclusion probability’ is the probability that the variable is included in the mean or residual model
component (i.e. βj �=0 or ρ< 1).
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Fig. 5. (a) Plot of the raw data by temperature and air-conditioning ( , no air-conditioning; , air-condi-
tioning) and (b) temperature and residential air exchange rate ( , residential air exchange rate above the
median residential air exchange rate)

sure, temperature and air-conditioning. Similarly, Fig. 5(b) shows that the effect of residential
air exchange rates is the largest when the temperature is between 70 and 80 ◦F. Also, the mean
response is between −1.25 and −1.28 for all combinations of air-conditioning and employment,
except for the group without air-conditioning or employment, which has mean response −0.98.
Therefore, it appears that air-conditioning has a protective effect only for the unemployed.

Including the interactions also affects the other variables in the model. Air-conditioning
status is now included in the linear mean, as expected. Also the child care air exchange rate and
the indicator of age less than 4 years are included in the linear mean term, providing evidence
of a protective effect for young children. This may be because the difference between air quality
in homes and child care facilities is only substantial after accounting for both residential air
exchange rate and air-conditioning.

To inspect the fit of the final model we use fivefold cross-validation. We fit the final model
described above and linear regression model with the same variables included in the mean, but
Gaussian residuals, independent over the covariates. Fig. 6(a) plots the posterior predictive
means against the observed data. There is a clear correlation, but considerable variation in the
observations, emphasizing the need to consider the distribution of exposure across the popu-
lation rather than a simple one-number summary. To evaluate whether the posterior predictive
distribution fits the data well, we compute the probability inverse transform diagnostic PIT that
was discussed in Gneiting et al. (2007). For each observation we compute PITi = P.yÅ < yi/,
where yi is the observation and yÅ

i follows the posterior predictive distribution. Assuming that
the model is correct, PITi should approximately follow a U.0, 1/ distribution. Fig. 6(b) shows
that the PIT-diagnostics more closely resemble uniform than those from the linear regression
model.

6. Discussion

In this paper we present a method for variable selection with Bayesian conditional density
estimation. We alleviate the curse of dimensionality by using stochastic search variable selec-
tion to identify a subset of covariates that have more than just additive effects on the mean of
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Fig. 6. Summary of the cross-validation: (a) testing data versus the posterior predictive mean; (b) PIT-
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the conditional density. We use our approach to build an emulator for a pollution exposure
model to be used in a future large-scale study of the effect of air pollution on human health.

A strength of our approach is its flexibility; as we show in the simulation study we can iden-
tify several complicated effects. Identifying variables with complicated effects aids in the model
building process, as we can focus on building a parametric model for a few variables rather
than high dimensional exploratory analysis. This is demonstrated by our analysis of the APEX
simulator. After an initial fit with the kernel stick breaking model we add several interactions.
It is possible that after a few more iterations of this process we could postulate a model that did
not include any predictors in the non-parametric part. In this case, the kernel stick breaking
model serves as a guide to model building and as verification that the parametric model captures
the important features of the data.

A future extension of this work would be to combine the APEX exposure simulator with field
data to validate and/or improve the estimate of the exposure distribution by identifying and
accounting for systematic biases in the APEX model. The calibration–validation problem was
discussed for deterministic models in Bayarri et al. (2007). A simultaneous model for stochastic
APEX simulator and field data would be to assume that the two sources of data shared some
features, e.g. the mixture probabilities and variances, but had different regression coefficients
and mixture means that were given multivariate priors to borrow strength across the two sources
of data.
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