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Abstract

Bayesian networks have recently found many applications in systems reliability; however, the focus has been on binary outcomes. In

this paper we extend their use to multilevel discrete data and discuss how to make joint inference about all of the nodes in the network.

These methods are applicable when system structures are too complex to be represented by fault trees. The methods are illustrated

through four examples that are structured to clarify the scope of the problem.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Bayesian belief network; System reliability; Bayesian reliability

1. Introduction

Bayesian networks (BNs) have recently found many
applications in reliability (cf. [3,5]). The focus of the
applications has generally been on dichotomous variables
representing binary outcomes, i.e., either components and
systems are functioning or not functioning. A natural
example of this is the BN representation of a fault tree (cf.
[1,2,4,7]). However, many system structures are too
complex to be represented by fault trees. For example,
consider a system in the design phase. We may want to
model the system with a BN to capture the uncertainty
about whether two components that function individually
will interoperate and produce a working system. This
article extends complex systems modeling using BNs for
multilevel discrete data.

Multilevel data are common in the surveillance of
weapon stockpiles. Typically, it is too expensive to test
large numbers of systems, and often, testing is destructive.
Consequently, there are system tests with no component
information. Component testing is often less expensive,
and thus is also performed. Occasionally, there is data on

the conditional distributions—perhaps enough data were
collected to perform fault attribution when the system
failed. Surveillance programs also have a need to make
inference through the system. If we understand which
components have large uncertainties that are reflected in
the system uncertainty, we can allocate resources to
additional testing.
Current applications of BNs focus primarily on cause/

consequence relationships of the network, i.e., inference
about an event (consequence) based on information about
one or more events (causes) leading to that event. Our
interest lies in possibly making joint inference about all of
the events. For example, given varying amounts of data on
the consequence, we would like to make statements about
the likely causes or perhaps combine that data with existing
data on the causes to make inference about the system. In
other words, we would like to work the BN for inference in
all possible directions. We also consider combining discrete
data collected over time within a BN structure.
Section 2 reviews the basics of BNs, Section 3 provides

several examples, and Section 4 contains discussion and
conclusions.

2. BNs for system representation

Reliability block diagrams and fault trees are the most
common representations in system reliability analysis. The
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most common use is to find the probability distribution for
the state of the system. However, there are situations where
these models do not offer enough flexibility to capture
features of the system. BNs generalize fault trees and
reliability block diagrams by allowing components and
subsystems to be related by conditional probabilities
instead of deterministic AND and OR relationships.

Formally, a BN is a pair N ¼ /(V,E),PS, where (V,E)
are the nodes (vertices) and edges of a directed acyclic
graph and P is a probability distribution on V. Each node
contains a random variable, and the directed edges between
them define conditional dependence or independence
among the random variables. Fig. 1 summarizes the three
probabilistic relationships that can be specified in a BN.
The key feature of a BN is that it specifies the joint
distribution P over the set of nodes V in terms of
conditional distributions. In particular, the joint distribu-
tion of V is given by
Y

v2V

Pðvjparents½v�Þ,

where the parents of a node are the set of nodes with an
edge pointing to the node.

For example, in the serial structure in Fig. 1a, node C is
called a root node. Node C is the parent (or predecessor) of
node B which is also called the child (or descendant) of
node C. The directed branch linking the two nodes is
interpreted to mean that the parent node has a direct
influence on the child node. Node A has no descendants
and it is called a leaf.

Fig. 1b shows a converging BN while Fig. 1c shows a
diverging BN. The primary applications of BNs have been

to make inferences about node A given information about
nodes B and C. Our concern is to combine data available
on node A along with data available on nodes B and C to
make inference about all three nodes.
BNs can be used as a direct generalization of fault trees.

The fault tree translation to a BN is straightforward, with
the basic events that contribute to an intermediate event
represented as parents and a child. Fig. 2 shows the
correspondence between a fault tree AND gate and a BN
converging structure.
Notice that a fault tree implies specific conditional

probabilities. An OR gate in a fault tree can also be
represented by the converging structure in Fig. 1b, with
appropriate changes to the conditional probabilities.

3. Inference from multilevel data

Consider the BN from Fig. 3. Node S represents the full
system and nodes C1 and C2 represent components. We
illustrate the basic principles of inference with multilevel
data in a BN using this particularly simple structure.
Examples 1–3 consider the different cases with varying
amounts of data. The simple structure illuminates the
working of the BN in both directions.
The outcomes for C1, C2, and S are all binary,

corresponding to nominal (1) and degraded (0) states of
the components and system. Note that this is not a series
system, nor does this system correspond to a fault tree. In
fact, we may not have any details on the system
architecture. It is possible that both C1 and C2 are in the
degraded state and the system functions.
In Example 1, we calculate the unknown posterior

marginal distributions for P(S), P(C1), and P(C2) given
that we know the conditional distributions from simulated
data given in Table 1. In Example 2, we calculate the
posterior distributions for the same marginal distributions
and P(S|C1,C2) when the both the marginal and condi-
tional distributions are unknown. In Example 3, we
calculate the posterior marginal and conditional distribu-
tions when we have additional data on some of the
conditional distributions. In Example 4, we generalize the
methods to the case when the data at each node are
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C B A

B A C

B A C

P(A,B,C) = P(A|B)P(B|C)P(C)

P(A,B,C) = P(A|B,C)P(B)P(C)

P(A,B,C) = P(C|A)P(B|A)P(A)

Fig. 1. Specifying joint probability distributions using a Bayesian

network.

Fig. 2. Fault tree conversion to Bayesian network.
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collected over time. These scenarios allow us to study the
system under the various types and levels of available data.

Example 1 (Conditional distributions known). This exam-
ple considers the network of Fig. 3. C1, C2, and S each have
binary outcomes corresponding to nominal (1) and
degraded (0) states of the components and system. The
system probability is represented by

PðSÞ ¼
X1

i¼0

X1

j¼0

PðS ¼ 1jC1 ¼ i;C2 ¼ jÞPðC1 ¼ i;C2 ¼ jÞ:

In this example, we assume that P(S ¼ 1|C1 ¼ i,C2 ¼ j)
is known and given in Table 1 for a given (i,j), but
P(C1 ¼ i,C2 ¼ j) is unknown for any given (i,j).

Table 3 gives data on the full system S and components
C1 and C2. Given these data, the likelihood has the form

Lðp1; p2Þ ¼ p11
1 ð1� p1Þ

3p37
2 ð1� p2Þ

4p8
Sð1� pSÞ

3, (1)

where

pS ¼ 0:95p1p2 þ 0:70p1ð1� p2Þ þ 0:40ð1� p1Þp2

þ 0:10ð1� p1Þð1� p2Þ. ð2Þ

We use a Bayesian approach to calculate the unknown
marginal probabilities. We specify a prior distribution for
the unknown joint distribution P(C1 ¼ i,C2 ¼ j) as the
product of independent Uniform(0,1) distributions. The
posterior distributions are calculated using Markov Chain
Monte Carlo (MCMC).

Fig. 4 shows the marginal posterior distribution for
P(C1 ¼ 1) using all of the observed data (solid) and only
the data collected directly about C1 (dashed). Figs. 5 and 6
show the results for P(C2 ¼ 1) and P(S ¼ 1). The solid
vertical lines in the figures are the values of P(C1 ¼ 1),
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S

C1 C2

Fig. 3. Bayesian network for Examples 1–3.

Table 1

Conditional probabilities of S given C1 and C2 for Examples 1–3

C1 C2 P(S ¼ 1|C1,C2)

1 1 0.95

1 0 0.70

0 1 0.40

0 0 0.10

Fig. 4. Posterior distribution for P(C1 ¼ 1): (i) using all data (solid); (ii)

using only data observed at C1 (dashed).

Fig. 5. Posterior distribution for P(C2 ¼ 1): (i) using all data (solid); (ii)

using only data observed at C2 (dashed).

Fig. 6. Posterior distribution for P(S ¼ 1): (i) using all data (solid); (ii)

using only data observed at S (dashed).

A.G. Wilson, A.V. Huzurbazar / Reliability Engineering and System Safety 92 (2007) 1413–1420 1415
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P(C2 ¼ 1), and P(S ¼ 1), given in Table 2, that we want to
estimate. Notice that the incorporation of the component
data adds considerable precision to the estimate of the
system reliability.

Table 4 provides a numerical summary of the posterior
distributions. Even when no data are observed at a
particular component, the structure of the BN, the
specification of the prior distribution, and the data at the
system and the other component allow estimation at that
component where no data are observed. Fig. 7 shows the
estimate for the reliability at C1 when the first row of
Table 3 is excluded from the analysis (dotted) compared to
the Uniform(0,1) prior distribution (dashed) and the
estimate when the data are available (solid) (Table 4).

Example 2 (Marginal and conditional distributions un-

known). This example changes the assumptions of
Example 1 so that the conditional probabilities,
P(S ¼ 1|C1 ¼ i,C2 ¼ j), and marginal probabilities,
P(C1 ¼ i,C2 ¼ j), are unknown. We again have the data
in Table 3 and use the product of Uniform(0,1) distribu-
tions to specify the prior on PðC1 ¼ i;C2 ¼ jÞ. Addition-
ally, we specify informative priors for the conditional
distributions:

PðS ¼ 1jC1 ¼ 1;C2 ¼ 1Þ�Uniformð0:75; 1Þ,

PðS ¼ 1jC1 ¼ 1;C2 ¼ 0Þ�Uniformð0:25; 0:75Þ,

PðS ¼ 1jC1 ¼ 0;C2 ¼ 1Þ�Uniformð0:25; 0:75Þ,

PðS ¼ 1jC1 ¼ 0;C2 ¼ 0Þ�Uniformð0; 0:25Þ.

Given the data in Table 3, the likelihood has the form of
(1), but it is now a function of p1, p2, and the unknown
conditional probabilities, t1, t2, t3, and t4. The expression
for pS is similar to (2) but now has the additional unknown
parameters t1, t2, t3, and t4,

pS ¼ t1p1p2 þ t2p1ð1� p2Þ þ t3ð1� p1Þp2

þ t4ð1� p1Þð1� p2Þ. ð3Þ

Table 5 provides a numerical summary of the posterior
distributions. Figs. 8 and 9 show that there is very little
difference between the posterior distributions for the
component reliabilities with the conditional distributions
known or unknown. However, Fig. 10 shows that there is a
larger difference in the posterior for the system reliability.
The estimate has less precision and a shift in location.

Fig. 11 shows the posterior distribution of t1. The data in
Table 3 provide virtually no information about the
conditional probabilities P(S ¼ 1|C1 ¼ i,C2 ¼ j): the pos-
terior distribution is very similar to the Uniform(0.75,1)
prior distribution. The posterior distributions for t2, t3,
and t4 show that these are also essentially unchanged from
their prior distributions and are not presented.

Example 3 (Marginal and conditional distributions un-

known, additional data to estimate conditional distribu-

tions). Suppose that for Example 2, we have the original
data from Table 3 and some additional data from Table 6.
The data in Table 6 were collected so that we have
information about the state of the system and all of its
components from the same test. Recall that this is not a
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Fig. 7. Posterior distribution for P(C1 ¼ 1): (i) using all data (solid); (ii)

assuming no data was observed at C1 (dotted); (iii) prior distribution for

P(C1 ¼ 1) (dashed).

Table 2

Marginal probabilities for Examples 1–3

P(C1 ¼ 1) 0.777

P(C2 ¼ 1) 0.940

P(S ¼ 1) 0.812

Table 3

Data for Examples 1–3

C1 11/14

C2 37/41

System (S) 8/11

Table 4

Summary of posterior distributions for Example 1

Mean 2.5% 97.5% Actual

p1 0.73 0.52 0.90 0.777

p2 0.88 0.77 0.96 0.940

pS 0.77 0.65 0.87 0.812

Table 5

Summary of posterior distributions for Example 2

Mean 2.5% 97.5% Actual

p1 0.77 0.53 0.92 0.777

p2 0.88 0.77 0.96 0.940

pS 0.73 0.60 0.86 0.812

t1 0.87 0.76 0.99 0.95

t2 0.50 0.26 0.75 0.70

t3 0.50 0.25 0.74 0.40

t4 0.13 0.0062 0.24 0.10

A.G. Wilson, A.V. Huzurbazar / Reliability Engineering and System Safety 92 (2007) 1413–14201416
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fault tree or a series system, so we could have system
failures even when both of the components are working
(although we did not observe any): Similarly, we can have
system failures even when one of the components is
working, and system successes even when both components
fail.

Given the data in Tables 3 and 6, the likelihood has the
form

Lðp1; p2; t1; t2; t3; t4Þ ¼ p11
1 ð1� p1Þ

3p37
2 ð1� p2Þ

4p8
Sð1� pSÞ

3

�t141 t53ð1� t3Þ
7t24ð1� t4Þ

16,

where the expression for pS is given in (3).
Using the same prior distributions for p1, p2, t1, t2, t3,

and t4 as in Example 2, we calculate the posterior
distributions using MCMC. Table 7 provides a numerical
summary of the posterior distributions.

With the data on the conditionals, even though direct
data on t2 is not available, the posterior distributions have
changed from the prior distribution.

Fig. 12 gives the posterior distribution on t1. The
posterior distribution for the system reliability (dotted),
shown in Fig. 13, changes in the expected direction: there is
less variability than when the conditionals are unknown
and have no data (dashed) and more than when the
conditional are completely known (solid).

Example 4 (Logistic regression). In this example, we
extend the analysis to the case where we have binary data
collected over time in the BN. Such situations arise
commonly in weapons surveillance programs. Suppose we
wish to predict the reliability of a weapon system as a
function of time. Suppose further that the system is simple
enough that it comprises of two components. Our data
represent snapshots across time of system and component
successes and failures. Periodically, some number of
weapons are removed from the stockpile and tested as full
systems. If a failure is observed, it cannot be attributed to a
specific component. In addition, other weapons are
removed from the stockpile and broken down into
components, which are individually tested. The system
and component tests generally do not occur at the same
points in time, so it is important that the analysis
methodology not require concurrent testing. Given such
information, we would like to predict the system reliability
over time.

The data for this analysis are given in Table 8. Notice
that in Example 2, we analyzed one column of complete
data (e.g., the data in column 3 of Table 8). Here we
analyze a sequence of data like that in Table 3 across time
and with missing information. As with the previous
examples, these data were simulated using the conditional
probabilities given in Table 1.

We fit a logistic regression model for C1 and C2, with

PðCi ¼ 1Þ ¼ pi ¼
expðai þ bitÞ

1þ expðai þ bitÞ
.

ARTICLE IN PRESS

Fig. 8. Posterior distribution for P(C1 ¼ 1) with: (i) conditional distribu-

tions unknown (dashed); (ii) conditionals known as in Example 1 (solid).

Fig. 9. Posterior distribution for P(C2 ¼ 1) with: (i) conditional distribu-

tions unknown (dashed); (ii) posterior distribution with conditionals

known as in Example 1 (solid).

Fig. 10. Posterior distribution for P(S ¼ 1) with: (i) conditional distribu-

tions unknown (dashed); (ii) conditionals known as in Example 1 (solid);

posterior distribution using only data observed at S (dotted).

A.G. Wilson, A.V. Huzurbazar / Reliability Engineering and System Safety 92 (2007) 1413–1420 1417



Aut
ho

r's
   

pe
rs

on
al

   
co

py

This implies that the reliability of the system at time t has
the following form:

pS ¼ t1
expða1 þ a2 þ ðb1 þ b2ÞtÞ

ð1þ expða1 þ b1tÞÞð1þ expða2 þ b2tÞÞ

þ t2
expða1 þ b1tÞ

ð1þ expða1 þ b1tÞÞð1þ expða2 þ b2tÞÞ

þ t3
expða2 þ b2tÞ

ð1þ expða1 þ b1tÞÞð1þ expða2 þ b2tÞÞ

þ t4
1

ð1þ expða1 þ b1tÞÞð1þ expða2 þ b2tÞÞ
.

While each component is modeled by a logistic regres-
sion, this structure does not carry over to the system.
Fig. 14 shows the posterior mean and 90% credible

interval for system reliability. Table 9 provides a numerical
summary of the posterior distributions. This is often the
stated goal of analysis in a weapon surveillance context.
This information can be useful in developing tactics.
Suppose that the system requires 80% reliability. As the
system ages and its reliability drops, it may be necessary to
use two systems instead of one to achieve the requirement.
However, in addition to the full system summary, it can be
informative to consider the reliability over time for each
component. Fig. 15 shows the posterior mean and 90%
credible interval for component 1 reliability. When con-
sidering a life extension program, where a particular
component might be changed to improve reliability,
predicting reliability into the future provides useful
information.

4. Discussion

In this paper we provide a generalization of Hamada et
al. [2], which discusses how to model multilevel binary data
for the special case of fault trees. Fault trees do not always
capture the complexities of a system. We suggest the use of
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Fig. 11. Posterior distribution for t1 ¼ P(S ¼ 1|C1 ¼ 1,C2 ¼ 1) with

conditional distributions unknown.

Table 6

Additional data for conditional distributions for Example 3

S ¼ 1|C1 ¼ 1,C2 ¼ 1 14/14

S ¼ 1|C1 ¼ 0,C2 ¼ 1 5/12

S ¼ 1|C1 ¼ 0,C2 ¼ 0 2/18

Table 7

Summary of posterior distributions for Example 3

Mean 2.5% 97.5% Actual

p1 0.74 0.52 0.91 0.777

p2 0.88 0.77 0.96 0.940

pS 0.76 0.63 0.87 0.812

t1 0.94 0.80 1.0 0.95

t2 0.50 0.26 0.74 0.70

t3 0.44 0.27 0.67 0.40

t4 0.13 0.033 0.24 0.10

Fig. 12. Posterior distribution for t1 ¼ P(S ¼ 1|C1 ¼ 1,C2 ¼ 1) with

additional data from Table 4.

Fig. 13. Posterior distribution for P(S ¼ 1) with: (i) conditional distribu-

tions unknown (dashed); (ii) posterior distribution with conditionals

known as in Example 1 (solid); (iii) posterior distribution with additional

data on conditionals (dotted).

A.G. Wilson, A.V. Huzurbazar / Reliability Engineering and System Safety 92 (2007) 1413–14201418
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BNs to model multilevel system reliability. Our focus is on
using information at all levels and in all directions of the
BN.

Example 1 considers the case of a BN where the
conditional probabilities are known, but the component
and system reliabilities need to be estimated. Example 2
extends Example 1 to consider the case where the
conditional probabilities are also unknown. Example 3
shows the impact of adding additional data to Example 2
to improve the estimation of the conditional probabilities.
Example 4 is the culmination of Examples 1 and 2 where
we consider component and system data collected over
time.

All of the analyses considered here are fully Bayesian, as
they specify prior distributions for the unknown para-

meters and use Bayes’ Theorem to calculate the posterior
distributions. Although this paper considers uniform prior
distributions, other prior distributions work equally well
within this framework.
Further work concerns multinomial data. While the

generalizations of the likelihoods in this case appears
straightforward, for a system with a large number of nodes
(e.g., Wilson et al. [6]), the implementation is problematic.
In a large system, analytical expressions for system
reliability are intractable. Other problems include prior
specification, efficient computation, and information in-
tegration.
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