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Abstract

In this paper we expand on recent advances in the simultaneous inference for multi-
level data in fault trees and Bayesian networks as discussed in [7] and [18]. Specifi-
cally, we incorporate partial knowledge of the parameters of a Dirichlet distribution.
This is essentially a credal network with the information on the components rep-
resented by an Imprecise Dirichlet model. We make simultaneous inference on all
nodes of the credal network by updating with data. We compare this model to
existing Bayesian approaches with respect to the assumptions specific to the prior
distribution and the available data.
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1 Introduction

System reliability is defined as the ability of a system to perform a required
function, under given environmental and operational conditions and for a
stated period of time (cf. [11]). System reliability includes the reliability of
all the subsystems and components that comprise the system under consider-
ation. Several types of data can be used to model and analyze system reliabil-
ity. These data may be obtained from different sources, such as observations
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from testing, computer simulations, or expert elicitation. There may be data
on different levels of a system, including components, subsystems, or the full
system. We refer to this last situation as multilevel data.

Multilevel data can occur in several ways. For example, we may have data
on system tests but without component level information. Alternatively, we
may have some prior component data from engineering tests that must be
combined with full system data. Although this is a common occurrence for
data in practice, inferential approaches for this kind of data are reasonably
new [7, 18].

This article is organized as follows. Section 2 gives a brief background on
imprecise probabilities (IPs) and the Imprecise Dirichlet model (IDM). Section
3 briefly reviews the use of Bayesian networks (BNs) for system representation.
Sections 4, 5, and 6 present a sequence of examples structured to develop the
use of the IDM with a BN for multilevel data for a system. Section 4 considers
multilevel data on a fault tree modeled by a Bayesian multinomial-Dirichlet
model. Section 5 expands the problem of Sect. 4 by allowing hyperpriors or
second order probabilities. Section 6 unifies these methods under the IDM
framework. Section 7 provides a discussion and comparison of the models.

2 Imprecise Probabilities and the Imprecise Dirichlet Model

One of the attractions of IPs is the flexibility with which information can be
represented. This uncertainty quantification method requires few assumptions
on the structure of information and provides a very general characterization
of uncertainty. The seminal work on IPs, Walley [14], is a comprehensive dis-
cussion on the foundation, interpretation, and application of IPs. The use of
IPs for problems in reliability has been a subject of research in recent years.
Interesting examples of IPs in reliability include [8], [13], and [4]. Our interest
focuses on the use of data to update our current state of knowledge. Previous
work in this area can be found in [14], [15], [16], and [5]. Similar work has
been done with Dempster-Shafer belief structures in Wasserman [17]. Coolen
[3] discusses the frequentist connection between empirical data and convex
sets of probabilities.

The IDM was first described by Walley [15]. Walley presents the case of making
inferences about multinomial data with minimal prior information and com-
pares the IDM with the objective Bayesian and frequentist models. Bernard
[1] provides an excellent review of the IDM. When combined with Bayes’ The-
orem, the IDM allows for updating prior information with data.
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(a) Serial: P(A,B,C) = P(C|B)P(B|A)P(A)
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(c) Diverging: P(A,B,C) = P(C|A)P(B|A)P(A)

Fig. 1. Specifying joint probability distributions using a Bayesian network.

3 Bayesian Networks for System Representation

Reliability block diagrams and fault trees are the most common representa-
tions in system reliability analysis. Their use is mainly to find the probability
distribution for the state of the system. However, there are situations where
these models do not offer enough flexibility to capture features of the system.
BNs generalize fault trees and reliability block diagrams by allowing com-
ponents and subsystems to be related by conditional probabilities instead of
deterministic AND and OR relationships. Some recent work includes [12], [9],
[10], and [18].

Formally, a BN is a pair N = 〈(V, E), P 〉, where (V,E) are the nodes (vertices)
and edges of a directed acyclic graph and P is a probability distribution on V .
Each node contains a random variable, and the directed edges between them
define conditional dependence or independence among the random variables.
Figure 1 summarizes the three probabilistic relationships that can be specified
in a BN. The key feature of a BN is that it specifies the joint distribution P
over the set of nodes V in terms of conditional distributions. In particular, the
joint distribution of V is given by

∏

v∈V

P(v|parents[v]),

where the parents of a node are the set of nodes with an edge pointing to the
node.

For example, in the serial structure in Fig. 1a, node A is called a root node.
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P(C = 1|A = 1, B = 1) = 1
P(C = 1|A = 1, B = 0) = 1
P(C = 1|A = 0, B = 1) = 1
P(C = 1|A = 0, B = 0) = 0

Fig. 2. Fault tree conversion to Bayesian network.

Node A is the parent (or predecessor) of node B, which is also called the
child (or descendant) of node A. The directed branch linking the two nodes is
interpreted to mean that the parent node has a direct influence on the child
node. Node C has no descendants and it is called a leaf.

Figure 1b shows a converging BN while Fig. 1c shows a diverging BN. The
primary applications of BNs have been to make inferences about node A given
information about nodes B and C. Our concern is to combine data available
on node A along with data available on nodes B and C to make inference
about all three nodes.

BNs can be used as a direct generalization of fault trees. The fault-tree trans-
lation to a BN is straightforward, with the basic events that contribute to an
intermediate event represented as parents and a child. Figure 2 shows the cor-
respondence between a fault tree AND gate and a BN converging structure.
Notice that a fault tree implies specific conditional probabilities. We can use
the same BN converging structure of Fig. 2 with appropriate changes to the
conditional probabilities to represent an OR gate.

One important innovation for the handling of multilevel data is found in the
recent work on the Bayesian fault tree by Hamada et al. [7]. The authors de-
velop a method for handling data that originates anywhere in a fault tree on
basic events or intermediate events. While it is well known that basic events
provide information on the higher level events, this work exploits the idea
that higher level events also provide information on the basic events. This
method uses Bayes’ Theorem to obtain estimates of the basic event probabil-
ities through the propagation of nonoverlapping data on the basic events and
the top event. Wilson and Huzurbazar [18] generalize this method from the
Bayesian fault tree to the BN. As a consequence, information can be propa-
gated between levels in every direction of a more general modeling structure
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Table 1
Multilevel Data

R Y G

C1 5 3 32

C2 0 3 37

S 4 6 20

and simultaneous inference can be performed on all the nodes of the network.
It is this versatility in the propagation of information that we apply to a BN
with partial data represented as an imprecise probability distribution.

4 Bayesian Multinomial-Dirichlet Model for a Fault Tree with Mul-
tilevel Data

We illustrate statistical inference for multilevel data in system reliability with a
multistate fault tree. Most previous applications have focused on dichotomous
variables representing binary outcomes.

For this example, consider a fault tree representing a system, S, with two
components, C1 and C2. The system and each component can be in one of
three states: red or failed (R), yellow or degraded (Y), green or working (G).
In a fault tree, if the states of the components are known, the state of the
system is known. For this example, if any component is red, the system is red;
if both components are green, the system is green; otherwise, the system is
yellow.

Table 1 summarizes the data that was observed on the system. Forty tests (X1)
were performed on C1, 40 additional independent tests (X2) were performed
on C2, and 30 independent additional tests (XS) were performed on the system
S. If the system was not green/working, no “failure attribution” was done, so
there is no information about the states of C1 and C2 for the 30 tests.

We model the observed data using three multinomial distributions. Denote
the sampling distribution for the data observed for C1 as Multinomial(n1,
(p1R, p1Y , 1−p1R−p1Y )). P (C1 = R) is denoted as p1R, P (C1 = Y ) is p1Y , and
P (C1 = G) is p1G = 1− p1R− p1Y . Similarly, denote the sampling distribution
for the data observed for C2 as Multinomial(n2, (p2R, p2Y , 1− p2R− p2Y )) and
for S as Multinomial(nS, (pSR, pSY , 1− pSR − pSY )).

Because the states of C1 and C2 determine the state of S, we can write

pSR = p1Rp2R + p1Rp2Y + p1R(1− p2R − p2Y ) + p1Y p2R + (1)
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(1− p1R − p1Y )p2R

pSY = p1Y p2Y + p1Y (1− p2R − p2Y ) + (1− p1R − p1Y )p2Y

pSG = (1− p1R − p1Y )(1− p2R − p2Y ).

Consequently, the multinomial distribution describing the sampling distribu-
tion for the data observed for S has parameters: p1R, p1Y , p2R, and p2Y .

We are interested in using the data from Table 1 to make inferences about
the reliability of C1, C2, and S, or, more generally, about the probability that
the components and systems are in each of the three states. We use Bayesian
methodology from [7] to perform these computations.

The sampling distribution of the data specifies the likelihood function,

L(p1R, p1Y , p2R, p2Y |x) = p5
1Rp3

1Y (1− p1R − p1Y )32

p0
2Rp3

2Y (1− p2R − p2Y )37p4
SRp6

SY (1− pSR − pSY )20,

where expressions for pSR and pSY are given by (1).

We also specify prior distributions for the four unknown parameters. We
use (p1R, p1Y , p1G) ∼ Dirichlet(s1 = 2, t1 = (1

6
, 1

6
, 2

3
)) and (p2R, p2Y , p2G) ∼

Dirichlet(s2 = 2, t2 = (1
6
, 1

6
, 2

3
)), using Walley’s parameterization of the Dirich-

let [16].

Using Bayes’ Theorem, we know that the posterior distribution on the four
unknown parameters, f(p1R, p1Y , p2R, p2Y |x), is proportional to the product
of the prior and the likelihood, so that

f(p1R, p1Y , p2R, p2Y |x)∝ p5
1Rp3

1Y (1− p1R − p1Y )32p3
2Y (1− p2R − p2Y )37

(p1Rp2R + p1Rp2Y + p1R(1− p2R − p2Y ) + p1Y p2R + (1− p1R − p1Y )p2R)4

(p1Y p2Y + p1Y (1− p2R − p2Y ) + (1− p1R − p1Y )p2Y )6

((1− p1R − p1Y )(1− p2R − p2Y ))20

p
1
3
1Rp

1
3
1Y (1− p1R − p1Y )

4
3 p

1
3
2Rp

1
3
2Y (1− p2R − p2Y )

4
3 . (2)

We want to calculate several quantities using (2). In particular, we want to
calculate the marginal distribution for each parameter, which requires inte-
grating out the other three parameters and normalizing the result. We would
also like to calculate the marginal distributions for pSR, pSY , and pSG, which
are functions of the four parameters as given in (1). None of these distributions
can be calculated easily by integration; even numerical integration techniques
do not give us easy access to the marginal distributions for pSR, pSY , and pSG.

One method that allows us to circumvent this difficulty is Markov chain
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Fig. 3. The marginal posterior probability density functions for the multistate fault
tree with specified prior distributions, with pSG (green), pSY (yellow), pSR (red).

Monte Carlo (MCMC) [6]. MCMC constructs a stochastic process that has
f(p1R, p1Y , p2R, p2Y |x) as its limiting distribution. Once the algorithm has
converged, it produces random samples from f(p1R, p1Y , p2R, p2Y |x).

These random samples allow us to estimate the densities we want to calculate.
Suppose that we generate m random samples from the MCMC algorithm.
Denote the samples we generate (p

(i)
1R, p

(i)
1Y , p

(i)
2R, p

(i)
2Y ), where i = 1, . . . , m. We

estimate the marginal distribution of p1R with a histogram or kernel density
estimator of p

(i)
1R, for i = 1, . . . ,m; we estimate the marginal distribution of pSG

with a histogram or kernel density estimator of (1−p
(i)
1R−p

(i)
1Y )(1−p

(i)
2R−p

(i)
2Y ),

for i = 1, . . . ,m.

Figure 3 plots the posterior densities for pSG, pSY , and pSR. Table 2 summarizes
the posterior mean, 5th, and 95th percentiles for the system and component
reliabilites.

In this example, we performed simultaneous inference on the reliability of the
components and the system using data on the components and the system. In
the fault-tree structure, if we know the state of the components, we know the
state of the system. However, given the state of the system, we also have par-
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Table 2
Summary Statistics for Multistate Fault Tree with Specified Prior Distribution

Mean 5th Percentile 95th Percentile Actual

p1R 0.13 0.076 0.18 0.10

p1Y 0.090 0.040 0.15 0.10

p1G 0.78 0.72 0.84 0.80

p2R 0.0061 0.0000020 0.027 0.05

p2Y 0.095 0.051 0.15 0.05

p2G 0.99 0.84 0.94 0.90

pSR 0.13 0.082 0.19 0.145

pSY 0.16 0.11 0.22 0.135

pSG 0.70 0.64 0.77 0.72

tial knowledge about the states of the components. The approach here shows
explicitly how we update our uncertainties about the component probabilities
using both component and system data. (For another view of updating with
incomplete observations, see [5]).

5 Bayesian Multinomial-Dirichlet Model with Hyperpriors for a
Bayesian Network with Multilevel Data

As discussed in Sect. 3, BNs are a generalization of fault trees. In particular,
the AND and OR relationships between components and subsystems and the
full system are replaced with conditional probabilities. In this example, we
consider a system represented as a converging BN (Fig. 1b) with the system
as the child of components 1 (C1) and 2 (C2). Again, each component and
the system can take on three states: red or failed (R), yellow or degraded
(Y), green or working (G). Table 3 gives the conditional probabilities we use
in this example, and Table 1 contains the data. We are interested in making
inference about the probabilities that the components and system are in each
of the three states.

We model the observed data using three multinomial distributions. Denote
the sampling distribution for the data observed for C1 as Multinomial(n1,
(p1R, p1Y , 1− p1R − p1Y )), the sampling distribution for the data observed for
C2 as Multinomial(n2, (p2R, p2Y , 1−p2R−p2Y )), and the sampling distribution
for S as Multinomial(nS, (pSR, pSY , 1− pSR − pSY )).

The expressions for pSR and pSY are:
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Table 3
Conditional Probabilities for Bayesian Network Examples

x y z P (S = x |C1 = y, C2 = z) x y z P (S = x |C1 = y, C2 = z)

R R R 0.9 Y Y G 0.6

R R Y 0.7 Y G R 0.2

R R G 0.5 Y G Y 0.6

R Y R 0.6 Y G G 0.1

R Y Y 0.5 G R R 0.0

R Y G 0.2 G R Y 0.1

R G R 0.5 G R G 0.3

R G Y 0.2 G Y R 0.2

R G G 0.0 G Y Y 0.1

Y R R 0.1 G Y G 0.2

Y R Y 0.2 G G R 0.3

Y R G 0.2 G G Y 0.2

Y Y R 0.2 G G G 0.9

Y Y Y 0.4

pSR = 0.9p1Rp2R + 0.7p1Rp2Y + 0.5p1Rp2G + 0.6p1Y p2R +

0.5p1Y p2Y + 0.2p1Y p2G + 0.5p1Gp2R + 0.2p1Gp2Y , (3)

pSY = 0.1p1Rp2R + 0.2p1Rp2Y + 0.2p1Rp2G + 0.2p1Y p2R +

0.4p1Y p2Y + 0.6p1Y p2G + 0.2p1Gp2R + 0.6p1Gp2Y

0.1p1Gp2G. (4)

Using the data in Table 1, we write the likelihood function as

L(p1R, p1Y , p2R, p2Y ) = p5
1Rp3

1Y (1− p1R − p1Y )32p3
2Y (1− p2R − p2Y )37

p4
SRp6

SY (1− pSR − pSY )20, (5)

where we substitute the expression (3) for pSR and (4) for pSY .

Next, we specify prior distributions for the four unknown parameters. We spec-
ify (p1R, p1Y , p1G) ∼ Dirichlet(s1 = 2, t1) and (p2R, p2Y , p2G) ∼ Dirichlet(s2 =
2, t2). In this example, t1 and t2 are unknown parameters, and we specify
hyperpriors for them. In particular, we also use a Dirichlet distribution, with
t1 ∼ Dirichlet(2, (1

6
, 1

6
, 2

3
)) and t2 ∼ Dirichlet(2, (1

6
, 1

6
, 2

3
)).

Using Bayes’ Theorem, we know that the expression for the posterior distri-
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Fig. 4. The marginal posterior probability density functions for the BN with specified
hyperprior, with pSG (green), pSY (yellow), pSR (red).

bution is proportional to

f(p1R, p1Y , p2R, p2Y , t1, t2 |x)∝ p5
1Rp3

1Y (1− p1R − p1Y )32

p3
2Y (1− p2R − p2Y )37p4

SRp6
SY (1− pSR − pSY )20

p2t1R
1R p2t1Y

1Y (1− p1R − p1Y )2t1Gp2t2R
2R p2t2Y

2Y (1− p2R − p2Y )2t2G

t
1
3
1Rt

1
3
1Y t

4
3
1Gt

1
3
2Rt

1
3
2Y t

4
3
2G, (6)

where we substitute appropriate expressions for pSR and pSY .

Once again, the marginal densities are estimated using MCMC. Figure 4 plots
posterior densities for the system, and Table 4 summarizes the posterior prob-
abilites for all of the unknown parameters.
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Table 4
Summary Statistics for BN with Specified Hyperprior

Mean 5th Percentile 95th Percentile Actual

p1R 0.14 0.072 0.21 0.10

p1Y 0.079 0.027 0.15 0.10

p1G 0.78 0.71 0.85 0.80

p2R 0.0043 0.000015 0.022 0.05

p2Y 0.079 0.035 0.13 0.05

p2G 0.92 0.86 0.96 0.90

pSR 0.10 0.073 0.14 0.1045

pSY 0.18 0.16 0.21 0.1805

pSG 0.71 0.66 0.76 0.715

t1R 0.083 0.000071 0.36

t1Y 0.038 0.0 0.21

t1G 0.88 0.43 1.0

t2R 0.027 0.000062 0.12

t2Y 0.062 0.000013 0.28

t2G 0.91 0.68 1.0

6 Imprecise Dirichlet Model for a Bayesian Network with Multi-
level Data

In this example, we generalize the example from Sect. 5 to use the IDM instead
of a specific hyperprior. Again, we consider a converging BN with conditional
probabilities given in Table 3, data in Table 1, and expressions for system
reliability in (3). The observed data are modeled using three multinomial dis-
tributions, and we specify prior distributions (p1R, p1Y , p1G) ∼ Dirichlet(2, t1)
and (p2R, p2Y , p2G) ∼ Dirichlet(2, t2).

In the previous example, we chose specific hyperpriors to describe our uncer-
tainty about t1 and t2. In this example, we use the IDM. Instead of choosing
a particular hyperprior, we allow t1 and t2 to take on any values such that
t1R + t1Y + t1G = 1 and t2R + t2Y + t2G = 1. This specifies a set of prior dis-
tributions for t1 and t2 instead of a particular distribution. We apply Bayes’
Theorem using each prior distribution from the set and the likelihood function
specified in (5) to get a set of posterior distributions. We found the bounds by
calculating the posterior distributions using MCMC for a fine grid of values
for t1 and t2.
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Fig. 5. The bounds on the cumulative posterior distribution functions for the BN
with IDM, with pSG (green), pSY (yellow), pSR (red). The posterior distributions
from the BN with specified hyperprior are plotted as dashed lines.

We plot the bounds for the cumulative posterior distributions functions for
pSR, pSY , and pSG in Fig. 5. The posterior distributions from the previous
example are plotted as dotted lines. Since these posterior distributions are a
weighted combination of the posterior distributions from the IDM, they lie
within the bounds. Table 5 summarizes the bounds on the posterior means for
the set of posterior distributions.

7 Discussion

All of the examples considered in this paper consider simultaneous inference
for multilevel data within a multistate system reliability problem. Independent
data collected at both the components and the system are used to simultane-
ously update the probabilities that the components or system are in particular
states. The example in Section 4 describes the system structure using a fault
tree with known prior distributions for the states. The examples in Sections 5
and 6 use a BN to describe the system structure and consider a known hy-
perprior and the IDM to describe initial uncertainties about the parameters

12



Table 5
Summary Statistics for Posterior Means of BN with IDM

Lower Bound Upper Bound Lower Bound Upper Bound Actual

Mean Mean 5th Quantile 95th Quantile

p1R 0.12 0.16 0.057 0.23 0.10

p1Y 0.069 0.11 0.022 0.18 0.10

p1G 0.76 0.79 0.69 0.86 0.80

p2R 0.0027 0.041 0.000015 0.087 0.05

p2Y 0.062 0.10 0.021 0.16 0.05

p2G 0.89 0.92 0.83 0.96 0.90

pSR 0.10 0.13 0.070 0.16 0.1045

pSY 0.18 0.20 0.15 0.24 0.1805

pSG 0.69 0.72 0.64 0.74 0.715

of the Dirichlet distributions describing the state probabilities.

Figure 4 plots the probability density functions for the posterior probabil-
ities that the system is working, degraded, or failed. Since these posterior
distribution are a weighted combination of the elements of the set of posterior
distributions in Section 6, the cumulative distribution functions corresponding
to the density functions in Figure 4 are plotted as dashed lines in Figure 5
and lie between the bounds on the set of posterior distributions.

Tables 4 and 5 summarize the results of analysis with a known hyperprior
distribution and the IDM. The intervals in these tables have different inter-
pretations. In Table 4, the intervals spanned by the 5th and 95th quantiles
are a 90% posterior credible interval, which means that given our hyperprior
and the data in Table 1, there is a 90% chance that the parameter lies within
this interval. In Table 5, we summarize the minimum and maximum values
taken on by the posterior means in the set of posterior distributions. In addi-
tion, we also provide a two-sided credible interval, as described in Walley [15].
These intervals are calculated as the smallest 5th quantile and the largest 95th
quantile from the set of posterior distributions. These intervals will have at
least 90% posterior probability for each distribution in the set. Notice that the
interval of posterior means is too narrow and does not provide good coverage
of the actual parameter values that were used to simulate the data in Table 1;
the two-sided credible intervals are more reasonable, and are quite comparable
to the results with a specified hyperprior.
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