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Sample size calculations can help testers and evaluators decide how many samples they
need to collect to perform an experiment. These methods provide an explicit way of trading
off risk against cost. This paper presents the ideas needed to perform sample size
caleulations, formulas for the most common Gaussian and binomial data cases, and

examples of their use.

he primary purpose of statistical experimen-

tation is to collect information to support

decision making. Every time an experiment

is performed, the experimenter must decide
how many samples he or she can afford to collect and
analyze, given limited resources. Further, the experi-
menter must decide whether available resources are suf-
ficient to provide the information needed to support the
decision. There is a constant trade-off between how few
samples are needed in order to collect adequate informa-
tion and how many samples can be collected. These
trade-offs can be assessed using statistical methods of
sample size calculation.

To provide concrete examples for calculating sample
size, consider the following scenario. An air defense sys-
tem needs to be tested and evaluated. There are two
questions of interest:

(1) What is the probability that the system detects eli-
gible targets?

(2) What is the downrange error in the system’s esti-
mate of a target’s launch point?

After initial testing, improvements will be made in the
system, and additional testing will then be performed to
make sure that system performance has not been de-
graded. How can appropriate sample sizes be planned for
all these tests?

Decision-making guidelines

There are four steps in establishing decision-making
guidelines before an experiment is conducted: stating the
alternative decisions, defining the acceptable risks for
selecting the wrong alternative, establishing an objective
criterion for selecting between the alternative decisions,
and computing the requisite sample size (Diamond
1981).
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Stating Alternatives

The first steps in stating alternative decisions are to iden-
tify the quantity of interest and to decide what sort of
data will be collected to create information about that
quantity. This sounds like a simple problem, but that is
not always the case. Suppose one wants to assess the ef-
fectiveness of a new training program. What measurable
quantity captures the idea of effectiveness? Could you
give a multiple choice pre-test and post-test and compare
scores? Could you measure how quickly a trainee per-
forms a task before and after training?

TYPES OF DATA

The type of data collected helps determine the appropri-
ate statistical methods for sample size calculations. This
paper considers two of the most common types of data.
The first type of data is Bernoulli/binomial data. This
data arises from two-choice situations: yes or no, heads
or tails, detect or not detect. The data is often presented
as a proportion. For example, in the scenario mentioned
in the introduction, question 1 can be addressed by ex-

/amining what proportion of the time eligible targets were

detected.

The second type of data is Gaussian or normal data.
The distribution of Gaussian data looks like a “bell
curve.” Gaussian data often arises when a continuous
measurement is made: e.g., How tall are these soldiers?
What is the tensile strength of this type of steel? Ques-
tion 2 from the scenario could be planned assuming
Gaussian data.

ESTIMATION VERSUS TESTING

After the type of data to be collected is determined, the
type of answer required from the data must be chosen.
The two most common goals of an experiment are esti-




mation and testing. In an estimation problem, one is in-
terested in using experimental data to estimate some
unknown quantity and provide an indication of how
good the estimate is. For example, one might want to
collect data to estimate how often a system can detect a
target or how long it takes a part to fail. In an estimation
problem, one is not interested in making a comparison—
only in providing summary numbers.

In a testing problem, one is interested in comparing 2
quantity of interest against some criterion. For example,
one might be interested in whether the probability of
detection for a particular system is at least 0.7, or in
whether system improvements increase detection range
as compared to the old system.

In a testing situation, one makes two additional deci-
sions. The first is whether a one-sample or a two-sample
procedure is required. One-sample procedures require one
set of data and comparison against a fixed criterion. For
example, is the probability of detection for this system
greater than 0.7? Two-sample procedures compare two sets
of data. Is the new system’s probability of detection greater
than the old system’s probability of detection?

The second decision is whether a one-sided or two-sided
test is needed. A one-sided test is used when one is inter-
ested in whether the quantity of interest is greater than (or
less than) some criterion. For example, does this system
detect farther out than the old system? Is the downrange
error less than 0.3 km? A two-sided test is used when one
is interested in whether the quantity of interest is different
(not equal) to some criterion. Is the detection range 4 km,
or does it vary either larger or smaller?

SUMMARY OF DECISIONS REQUIRED

The decisions required to state alternatives can be sum-
marized as:

W What problem am I addressing, and what sort of data
will I collect to address it?

B Is the data Bernoulli/binomial, Gaussian, or some
other type?

m Am [ interested in estimation or testing?

m IfI am interested in testing, do I have a one-sample
or a two-sample problem?

m If] am interested in testing, do I have a one-sided or
a two-sided test?

Defining acceptable risks

Two types of errors can be made in the test and evalua-
tion setting. The first is deciding that a system meets its
operational requirements when it does not. This results
in a bad system going to the field. The second is decid-
ing that system does not meet requirements when it ac-
tually does. This results in spending a lot of money and
not fielding a worthwhile system. The trade-off between
these risks drives many of the decisions in sample size

calculation. Defining acceptable risks requires a different
thought process for estimation and testing.

ACCEPTABLE RISKS FOR ESTIMATION

In an estimation problem, the results are usually ex-
pressed using a confidence interval. A confidence inter-
val is a range of values calculated from the observed data
that tries to capture the quantity of interest. The basic
idea of a confidence interval is that if an experiment were
performed a large number of times and a confidence in-
terval were formed each time, 100(1 - o) percent of the
time, the confidence interval would contain the quantity
that we are trying to estimate. (Notice that we cannot say
anything about whether this particular confidence inter-
val contains the parameter—only that confidence inter-
vals in general contain the parameter the appropriate
proportion of the time.)

The first quantity that we have to specify is the «
mentioned above. This value is often known as the level
of significance of the confidence interval, and it is typi-
cally set at 0.01, 0.05, or 0.1. Choosing ¢ = 0.05 corre-
sponds to choosing a 95% confidence interval. The
second quantity to be chosen is the precision, 4, of the es-
timate. For a confidence interval, 4 corresponds to half of
the width of the confidence interval. For example, is it
sufficient to estimate the detection range to within plus
or minus 4 = 50 meters? To get more precision requires
more samples.

ACCEPTABLE RISKS FOR TESTING

Defining acceptable risks for testing requires more steps.
The first step is to write down formally the hypotheses
being examined. The null hypothesis (H,) assumes there
is no essential difference between the quantity of inter-
est and the criterion. For example, H: The proportion of
detections of eligible targets is 0.7. The alternative hy-
pothesis (H,) assumes that there is a difference. The type
of difference was determined in the “Estimation versus
Testing” paragraph above by deciding whether a one-
sided or two-sided test was needed. For example, for a
one-sided test, H,: The proportion of detections of eli-
gible targets is less than 0.7.

There are two types of incorrect decision that can be
made based upon these hypotheses. Defining acceptable
risk implies choosing a probability that these mistakes
will be made. The first type of error is called Type 1 or &
error. A Type 1 error occurs when one rejects Hj when
H, is true. For example, one concludes that the propor-
tion of detections of eligible targets is less than 0.7 when
it is actually 0.7. Traditionally, Type 1 error is set at 0.01,
0.05, or 0.1, although it can be set at any value between
Oand 1.

Type 2 or B error occurs when one accepts H when
H, is true. For example, one concludes that the probabil-
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ity of detection is 0.7 when it is actually smaller. Power is
1 - the probability of type 2 error, or the probability of re-
jecting H when it is false. Table 1 summarizes the types
of error. Effect size (ES), listed in the truth column, is dis-
cussed in the next paragraph.

TABLE 1. Type 1 and Type 2 Error

discussion of an estimation problem, a one-sample
test(s), and a two-sample test(s)-

BERNOULLI/BINOMIAL DATA

Bernoulli/binomial data arises when the response variable
has two levels: yes or no, detect or not detect.
The quantity of interest is the proportion of

DECISION

TRUTH No Improvement Improvement
No Improvement Correct Decision Type 1 Error
Probability: 1 - & Probability: o

Type 2 Error Correct Decision

Probability: B

Improvement of
Effect Size

Establishing objective criteria

When calculating sample size, it is necessary to specify
the minimum acceptable degree of change, or the effec
size (ES), that one wants to detect. Sample size calcula-
tions are dependent upon specifying an exact value for
the Es, not simply “any change.” For example, suppose
that in a baseline test, the probability of detection was
0.7. For a system enhancement, we want to be sure that
performance has not degraded. What is the minimum
value by which the new data must differ from the baseline
data to considered a degradation? In order to calculate 2
sample size for comparison, one must specify a specific ES
to detect; for example, any change of greater than 5%
should be detected as a degradation. If one looks at
sample size as a function of effect size, Type 1 error, and
Type 2 error, the smaller the effect size one wants to
detect, the larger the required sample size.

Computing sample size

Many of the formulas for computing sample size use
percentile points of the normal distribution. In the nota-
tion of the formulas, z, is the 700(1 - p) percentile point
of the normal distribution. Common points are listed in

Table 2.

TABLE 2: Percentiles of the normal distribution

p 100(1-p) percentile
0.010 2.326
0.025 1.960
0.050 1.645
0.100 1.282
0.150 1.036
0.200 0.842
0.250 0.675
0.300 0.524

The following sections discuss sample size formulas
for specific types of data. Within each group, there is a
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Probahility: 1 - p (Power)

“success,” p, where one of the responses is
designated as success. In the estimation
problem, one is trying to get a numerical es-
timate of p; in the one-sample testing prob-
lem, one is comparing p against a fixed
criterion; in the two-sample testing problem,
one is comparing the proportions arising
from two data sets.

Estimation of Proportion. There are two quantities that
must be specified: o, the level of significance of the con-
fidence interval, and 4, the width of the confidence inter-
val. In addition, one must specify a guess for the
proportion of success: call this guess p,. The formula for
sample size, 7, is given by:

i) @
“{Z ’2) pl-p)

d

‘ If it is not possible to speci'fy a guess for P O if one
wishes to use a conservative estimate, then notice that the
maximum value f01: pO{Il— p,) occurs when p = 0.5. In this
case, the formula simplifies to:

i ZL; {2)
4d

Consider question 1 from the scenario in the intro-

duction. Suppose that we would like to form a 90% con-
fidence interval for the proportion of detections of
eligible targets that has a total width of 10% (i.c., plus or
minus 5%). Suppose also that we do not have any
baseline data that would allow us to estimate p,. Using
the second formula, with z_, = 1.645 and 4 = 0.05, we
find a sample size of # = 271. If we could estimate p, =
0.7, then using the first formula, we find a sample size of
n = 227. By more precisely specifying p,, one can plan a
test with fewer samples.
One-sample Test of Proportion. In order to calculate the
sample size for a one-sample testing problem, one needs
to specify both the null and alternative hypotheses. For
Bernoulli/binomial data, the null hypothesis has the form
H p = p, where p, is the base case criterion value. The
alternative hypothesis depends on whether a one-sided or
two-sided test is required. Choose p, so that the effect
size is i?} _Po| ;

One must specify the Type 1 error rate (o) and the
Type 2 error rate (B). There are two formulas that one




can use to calculate the sample size (), and both should
give similar results. Arcsin is inverse sine, with its argu-
ment in radians. The formulas are given for a one-sided
test. To perform a two-sided test, substitute z,, forz,
but not z,, for z;.

| Za P\l Po +Zﬂ\)P1(1_p1)

P~ Po

®3)

Alternately,

Zatz B (4)

o iarcsin \[p_l—arcsin Jp'(,)

Consider again question 1 from the scenario in the
introduction. Suppose that we would like to compare the
proportion of detection against a criterion of 0.7 using
one-sided test, with H; p = 0.7 and H;p < 0.7. We
would like a Type 1 error of 10%, a power of 80%, and
an effect size of 5%. To use the formulas, we have z, =
1.282,7, = 0.842,p,=0.7, and p, = 0.65. Using the first
formula, we have n = 391; using the second formula, we
have n = 395. For planning purposes, these sample sizes
are essentially the same.

Testing the of Equality of Two Proportions. A common
problem in two-sample testing is the case where a previ-
ous experiment has been performed with a sample size of
n, and we want to calculate how many samples we should
use for a subsequent test (n,) to achieve a certain level of
Type 1 and Type 2 error.To use the formula below, the
null hypothesis has the form H: p =2, and the effect size
is 1p1 P i , but p, is the proportion from the initial ex-
periment. As before, to perform a two-sided test, substi-
tute z_, forz,, but not z,, for z,.
The formula is given as:

m= Ml (5)
2n,-m
where
Zat2p ®

"= E(arcsin \/_;a_farcsin m

If the denominator of the first equation is zero or
negative, then the problem is not solvable for the given
specifications. One must either increase 7, (usually im-
possible) or change the desired power, Type 1 error, or
effect size to decrease 7.

Consider question 1 from the scenario in the intro-
duction. Suppose that we ran an initial test with n = 400
and p, = 0.7. Qur hypotheses are one-sided, with

H:p,=p,and H:p,> Py In other words, we want to be
cure that there is no degradation with the system im-
provements. We would like a Type 1 error of 10%, a
power of 80%, and an effect size of 5%. To use the for-
mulas, we have z_= 1.282, z, = 0.842, and p, = 0.65.
Using the formula, we find n, = 31,640.

Clearly something strange is happening here. We
used a somewhat larger sample size than was required for
the one-sample test, but the sample size required for the
subsequent experiment has exploded. The explanation
for this is that when one performs a two-sample test, one
needs to have approximately twice as many observations
in each group as are required for the single group in the
one-sample test. The additional samples are required to
account for the variability in the estimate obtained from
the baseline case. If a follow-up test is planned, more
samples need to be collected for the baseline case to en-
sure that a good comparison can be made with a reason-
able number of samples.

Consider question 1 again, but suppose that we ran an
initial test with n = 750 and the same values discussed
above. Using the formula, we find n, = 837.

GAUSSIAN DATA

Gaussian data arises when a continuous measurement is
nade that results in data that fall roughly in the shape of
a bell curve. The quantity of interest in our discussion is
the average or mean, I, of the data, which roughly cor-
responds to the highest point ona histogram of the data.
The mean measures the center of the data. Although the
variance of the data will be unknown in some of our
problems, this article will not address variance estima-
tion.

In the estimation problem, one is trying to get a nu-
merical estimate of 11; in the one-sample testing problem,
one is comparing L against a fixed criterion; in the two-
sample testing problem, one is comparing the means aris-
ing from two data sets. )

Estimation of Mean. The first case of interest focuses on
the estimation of the mean of Gaussian data. There are
two quantities that must be specified: o, the level of sig-
nificance of the confidence interval, and 4, the width of
the confidence interval.

Estimation of Mean with Variance Known. In the

case where the variance, o?, of the underlying

Gaussian distribution for the data is known, it can
be used directly in the formula for sample size (7).

n:(zano-]:
d (7)

Consider question 2 from the scenario in the in-
troduction. Suppose that we would like to form a
90% confidence interval that had a total width of 3
km, and suppose also that we knew (probably from
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prior experience) that the standard deviation of the
data was 8 km. Then we have z_, = 1.645, 6 = 8,
and 4 = 1.5, which implies that n = 77,

Estimation of Mean with Variance Unknown. If the
variance of the underlying Gaussian distribution is
unknown, then the most straightforward way to es-
timate a sample size is to specify the precision 4 as
a multiple of the standard deviation, e.g., 4 = £c.
Then the formula in the above paragraph simplifies

to:
- Zal?!)
k

Suppose that we would like to form a 90% con-
fidence interval, but that we could not estimate the
standard deviation of the data’s underlying distribu-
tion. Suppose also, however, that we would be
happy with a confidence interval with a half-width
of 0.5 standard deviations. Then £ = 0.5, z_, =
1.645, and » = 11. This sample size is smaller than
that in the above example of “estimation of mean
with variance known” because there 4 = d/c =
0.1875, and more precision was required.

One-Sample Test of Mean. A one-sample test of the
mean involves comparing the mean against some fixed

(8)

criterion. Again, there are two cases: variance known and

variance unknown.

One-Sample Test of Mean with Variance Known. For
Gaussian data, the null hypothesis has the form A,
=, where 1 is the base case criterion value. The
alternative hypothesis depends on whether a one-
sided or two-sided test is required. Choose , 80
that the effect size is |y, — 1 |.

One must specify the Type 1 error rate () and the
Type 2 error rate (). Since the variance, 02 of the
underlying Gaussian distribution for the data is as-
sumed to be known, it can be used directly in the
formula for sample size (n). As usual, to perform a
two-sided test, substitute z, for z , but not Zyn for
z,. 2

n= J_H—(Zg'i‘Zﬁ) +1
|ﬂ1—#o|

Using the formula above, suppose that we have a
standard deviation G of 8, an effect size of 1, and
desire Type 1 and Type 2 error rates of 10%. To
perform a one-sided test would require a sample size
ofn=422,

One-Sample Test of Mean with Variance Unknown.
The case where the variance of the normal distribu-
tion is unknown is considerably harder. There are a
variety of approaches (see, for example, Desu and
Raghavarao 1990, p. 9-11). Two of the simplest ap-
proaches are presented here, and both require itera-
tive calculations.
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9)

Suppose that ¢, is a known upper bound for the
unknown variance 0% and choose i, so that the ef-
fect size is | u,—H, l . Then it can be shown that the
appropriate sample size for a one-sided test is the
smallest positive integer satisfying the following
equation (Desu and Raghavarao 1990), where £ s
the 100(1-p) percentile point of the t distribution
with m degrees of freedom:
2

| O'y(fn—l,a'l'fn—l,ﬁ) (10)
Hi—Hy

Of course, it is probably unrealistic to assume that a
good upper bound can be chosen for an unknown
variance. If the upper bound is chosen to be too
large, then the sample size is unnecessarily large.

Another procedure is proposed in Diamond (1981,
p- 55). First specify the effect size as a multiple of
the standard deviation so that B~ | =ko. To
get a starting value, substitute into equation number
(9) above, ignoring the final +1 term, as shown be-
low.

2
3 Zatzp

Ay ™ E (11)

Take this value of 7, and substitute it into the fol-
lowing equation, which is a simplification of the
equation given in the previous method.

2
tn-LaTin-18 (12)
A= m};——

Continuc the iterations by substituting 7 0o the
second equation to get #,,, etc., until the result does

{2}
not change.

Testing the Equality of Two Means. A common prob-
lem in two-sample testing is the case where a previous
experiment has been performed with a sample size of n .
and we want to calculate how many samples we should
use for a subsequent test (n,) to achieve a certain level of
Type 1 and Type 2 error. For normal data, assume that
the null hypothesis has the form H,: jt = 1, and the effect
size is | B, |, but U, is the mean from the initial ex-
periment.

Testing the Equality of Two Means when the Variances
are Known. If the variances for both the first and the
second set of data are known, then the sample size
can be calculated by substituting and solving for n,.
As before, to perform a two-sided test, substitute
z, for z,, but not 24 for Zg

2

2 2
Co, 01| Pt

13
nﬂ H; Za+ Zﬁ ( )




As an example, suppose that a preliminary experi-
ment had been done, with n, =75, 5, =3, u = 2.
Setting Type 1 and Type 2 error rates at 10%, con-
sidering an effect size of 1, assuming 6, = G, and
considering a one-sided test gives n, = 280.

Testing the Equality of Two Means when the Variances
are Unknown but Assumed Equal. Again, the variance
unknown case requires an iterative solution. If the
effect size can be specified as 4 = ko, then the new
sample size », can be calculated by solving for the
smallest positive integer satisfying:

2

Mol _ fno+n1—2,a+tno+n1—2,ﬁ
hotm k

(14)

As before, to perform a two-sided test, substitute

z_, for z , but not Zg, for Zp

Testing the Equality of Two Means with the Variances
Unknown but Not Assumed Equal. This problem,
known as the Behrens-Fisher problem, falls beyond
the scope of this paper. See Desu and Raghavarao
(1990) for a discussion of possible approaches.

Conclusions
The following general principles apply to sample size
calculations and are adapted from Kraemer and
Theimann (1987). These principles provide intuition
about the ways in which changes in error rates, effect
sizes, and sample sizes are interrelated.
B The smaller the probability of Type 1 (@) error de-
sired, the larger the necessary sample size (n). More
samples are needed to achieve a lower error probability.
B The smaller the probability of Type 2 (B) error de-
sired, the larger the necessary sample size (n). More
samples are needed to achieve a lower error probability.
m For a fixed sample size and effect size, lowering the
Type 1 error probability increases the Type 2 error prob-
ability, and vice versa.
B For a fixed effect size and Type 1 error probability,
the smaller the sample size, the smaller the power (i.e.,
the larger the Type 2 error probability).
B Two-tailed tests require larger sample sizes than one-
tailed tests. A two-tailed test examines two directions at
once, and consequently requires more samples.
B The smaller the effect size, the larger the required
sample size. Detection of small changes requires more
data than detection of large changes.
m If the proposed sample size is smaller than 20, one
must be willing to either tolerate high error probabilities
or be working in an area where the effect size is quite
large.

This paper addresses common situations where
sample sizes can be calculated analytically. For more
complicated situations, there are a variety of software

packages available. Recent reviews can be found in
Thomas (1997) and Thomas and Krebs (1997). Qa
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