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representation is not “data-reducing” like a wavelet decomposition, but is a highly md
representation of the image that allows efficient calculations using features at multiple

At first, the task of creating a “multi-scale” representation of image data seems somewhat :

arbitrary. Considered carefully, however, it is clear that when constructing a scale space repre-
sentation it is critically important that the transformation from fine scale to coarse scale actually
represent a simplification of the data, so that fine-scale features vanish monotonically with in.
creasing scale. Ifnew artificial structures could appear at coarse scales, it would be impossible to
determine whether these structures arose from finer scale features or by accident—for example
by the amplification of noise. ’

Witkin (1983) introduced the idea of scale space for continuous one-dimensional signals,
Given a signal f : R — R, the Gaussian scale space image L: Rx R™ — Risdefined so that
the representation at “zero-scale” is the original signal,

and the r;:presentat.ion at coarser scales is given by the convolution of the signal with the Gaussian
probability density function, G, with mean 0 and standard deviation o

L(z,0) = f(z) * G(z;0,0).

Witkin observed that the number of zero-crossings of the second derivative of the Gaussian
scale space of a one-dimensional signal decreases monotonically with scale. Yuille and Poggio
(1986) extend this result to any differential operator that commutes with the diffusion equation;
specifically, in one dimension, this property holds for derivatives of arbitrary order. Since the
local extrema of a signal correspond to the zero-crossings of its first derivative, the number of
local extrema decreases monotonically with scale.

In more than one dimension, however, there is no non-trivial linear shift-invariant (convo-
lution) kernel that never introduces new local extrema (Lifshitz and Pizer, 1990). To generalize
Gaussian scale space to more than one dimension, a different “monotonically decreasing fea-
ture” must be found. Koenderink (1984) derives a multi-dimensional Gaussian scale space
using the property of causality, which is meant to capture the idea that “any feature at a coarse
level of resolution is required to possess a (not necessarily unique) ‘cause’ at a fine level of
resolution, although the reverse need not be true” As developed by Koenderink, the causality
property implies that new level surfaces are not created as the scale parameter is increased, ie.,
that local extrema are not enhanced and do not “pop up out of nowhere” (Lindeberg, 1994).

If causality is combined with a prohibition of space-variant blurring, it can be shown that
the derived family of images must satisfy the diffusion equation, with the initial condition that
the derived image at scale zero is the initial image. This happens when the initial image is
convolved with the Gaussian density function or one of its derivatives. Scale is taken to be the
standard deviation of the Gaussian. If the image is thought of as an initial heat distribution, the
scale space shows the heat distribution over time as diffusion occurs in a homogeneous medium.

Figure 1 shows a one-dimensional signal and slices from its scale space at increasing scales.
Notice that small-scale features are suppressed as o increases.

Koenderink (1984) notes that the prohibition of space-variant blurring is made primarily for
computational convenience. If space-variant blurring is allowed, scale space methods known as
anisotropic diffusion result (Perona and Malik, 1990). It should also be noted that morphological
scale spaces (Jackway, 1992, 1993; van den Boomgaard, 1992) share many of the desirable
properties of Gaussian scale spaces and additionally have the property that the number of local
extrema is monotonically decreasing in scale, even in n dimensions.
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Figure 2. Prior su ion:
g rior simulation: (a) template; (b) template description; (c) sampled image; (d) prior mean.
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with meari one, To pecforin 4B mean five a._nd any _background pixel is Poisson distributed
space of true images. Take tha ayesian analysis, a prior distribution must be specified on the
e posterior dis H%b i ¢ prior to be the one simulated in the first example. Samples from
Fios St 1o an esl;: r:n (Fi fgurﬁ 3(c) were obtained using the Metropolis-Hastings algorithm
probability of being in e the posterior mean. Areas of Figure 3(d) that are dark have hi h
S g e region of interest. This can be compared to Figure 3(b), which g

ge that was used to generate Figure 3(a). Wit Shows

4, DISCUSSION
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Figure 3. Segmeniation: (a) noisy image; (bt

also be important to explore the sensitivity of
preliminary work in this direction has been p
describe the selection of featurcs for use in mu

Another issue under investigation is hyper-
tation, the hyper-parameters are fixed within !
of models would permit these parameters to -
images to define reasonable values.
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A fully Bayesian Decision Maker (DM) wishes
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