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Abstract

Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) definition of

probability distributions to characterize epistemic uncertainty in analysis inputs, (ii) generation of samples from uncertain analysis

inputs, (iii) propagation of sampled inputs through an analysis, (iv) presentation of uncertainty analysis results, and (v) determination of

sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and

illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial

correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding,

nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two-dimensional Kolmogorov–Smirnov

test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.
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1. Introduction

Uncertainty analysis and sensitivity analysis are essential
parts of analyses for complex systems [1–14]. Specifically,
uncertainty analysis refers to the determination of the
uncertainty in analysis results that derives from uncertainty
in analysis inputs, and sensitivity analysis refers to the
determination of the contributions of individual uncertain
analysis inputs to the uncertainty in analysis results. The
uncertainty under consideration here is often referred to as
epistemic uncertainty; alternative designations for this
form of uncertainty include state of knowledge, subjective,
reducible, and type B [15–24]. Epistemic uncertainty
derives from a lack of knowledge about the appropriate
value to use for a quantity that is assumed to have a fixed
value in the context of a particular analysis. In the
atter r 2005 Elsevier Ltd. All rights reserved.
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conceptual and computational organization of an analysis,
epistemic uncertainty is generally considered to be distinct
from aleatory uncertainty, which arises from an inherent
randomness in the behavior of the system under study
[15–24]. Alternative designations for aleatory uncertainty
include variability, stochastic, irreducible, and type A.
A number of approaches to uncertainty and sensitivity

analysis have been developed, including differential analy-
sis [25–33], response surface methodology [34–43], Monte
Carlo analysis [44–55], and variance decomposition proce-
dures [56–60]. Overviews of these approaches are available
in several reviews [61–68].
The focus of this presentation is on Monte Carlo (i.e.,

sampling-based) approaches to uncertainty and sensitivity
analysis. Sampling-based approaches to uncertainty and
sensitivity analysis are both effective and widely used
[69–83]. Analyses of this type involve the generation and
exploration of a mapping from uncertain analysis inputs to
uncertain analysis results. The underlying idea is that
analysis results yðxÞ ¼ ½y1ðxÞ; y2ðxÞ; . . . ; ynY ðxÞ� are func-
tions of uncertain analysis inputs x ¼ ½x1;x2; . . . ;xnX �. In
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turn, uncertainty in x results in a corresponding uncer-
tainty in y(x). This leads to two questions: (i) what is the
uncertainty in y(x) given the uncertainty in x? and (ii) how
important are the individual elements of x with respect to
the uncertainty in y(x)? The goal of uncertainty analysis is
to answer the first question, and the goal of sensitivity
analysis is to answer the second question. In practice, the
implementation of an uncertainty analysis and the im-
plementation of a sensitivity analysis are very closely
connected on both a conceptual and a computational level.

The following sections summarize and illustrate the five
basic components that underlie the implementation of a
sampling-based uncertainty and sensitivity analysis: (i)
definition of distributions D1, D2,y,DnX that characterize
the epistemic uncertainty in the elements x1, x2,y,xnX of x
(Section 2), (ii) generation of a sample x1, x2,y,xnS from
the x’s in consistency with the distributions D1, D2,y,DnX

(Section 3), (iii) propagation of the sample through the
analysis to produce a mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS,
from analysis inputs to analysis results (Section 4), (iv)
presentation of uncertainty analysis results (i.e., approx-
imations to the distributions of the elements of y

constructed from the corresponding elements of y(xi),
i ¼ 1; 2; . . . ; nS) (Section 5), and (v) determination of
sensitivity analysis results (i.e., exploration of the mapping
[xi, y(xi)], i ¼ 1; 2; . . . ; nS) (Section 6). The presentation
then ends with a concluding summary (Section 7).

Only probabilistic characterizations of uncertainty are
considered in this presentation. Alternative uncertainty
representations (e.g., evidence theory, possibility theory,
fuzzy set theory, interval analysis) are active areas of
research [84–92] but are outside the intended scope of this
presentation.

2. Characterization of uncertainty

Definition of the distributions D1, D2,y,DnX that
characterize the epistemic uncertainty in the elements x1,
x2,y,xnX of x is the most important part of a sampling-
based uncertainty and sensitivity analysis as these distribu-
tions determine both the uncertainty in y and the sensitivity
of the elements of y to the elements of x. The distributions
D1, D2,y,DnX are typically defined through an expert
review process [93–100], and their development can
constitute a major analysis cost. A possible analysis
strategy is to perform an initial exploratory analysis
with rather crude definitions for D1, D2,y,DnX and use
sensitivity analysis to identify the most important analysis
inputs; then, resources can be concentrated on characteriz-
ing the uncertainty in these inputs and a second presenta-
tion or decision-aiding analysis can be carried out with
these improved uncertainty characterizations.

The scope of an expert review process can vary widely
depending on the purpose of the analysis, the size of the
analysis, and the resources available to carry out the
analysis. At one extreme is a relatively small study in which
a single analyst both develops the uncertainty character-
izations (e.g., on the basis of personal knowledge or a
cursory literature review) and carries out the analysis. At
the other extreme, is a large analysis on which important
societal decisions will be based and for which uncertainty
characterizations are carried out for a large number of
variables by teams of outside experts who support the
analysts actually performing the analysis.
Given the breadth of analysis possibilities, it is beyond

the scope of this presentation to provide an exhaustive
review of how the distributions D1, D2,y,DnX might be
developed. However, as general guidance, it is best to avoid
trying to obtain these distributions by specifying the
defining parameters (e.g., mean and standard deviation)
for a particular distribution type. Rather, distributions can
be defined by specifying selected quantiles (e.g., 0.0, 0.1,
0.25,y,0.9, 1.0) of the corresponding cumulative distribu-
tion functions (CDFs), which should keep the individual
supplying the information in closer contact with the
original sources of information or insight than is the case
when a particular named distribution is specified (Fig. 1a).
Distributions from multiple experts can be aggregated by
averaging (Fig. 1b) [101].
This presentation draws most of its examples from an

uncertainty and sensitivity analysis carried out for a two
phase flow model (implemented in the BRAGFLO
program) [102–104] in support of the 1996 Compliance
Certification Application for the Waste Isolation Pilot
Plant [105–107]. The uncertain variables considered in the
example results (i.e., x1, x2,y,xnX with nX ¼ 31) and their
associated distributions (i.e., D1, D2,y,D31) are summar-
ized in Table 1. Additional information on the use of
these variables in the two phase flow model and on the
development of the associated uncertainty distributions is
available in the original analysis documentation [102,108].
Additional information: Section 6.2, Refs. [46,

93–100,109–119]. As an example, Ref. [100] describes the
approach used in the extensive expert review process that
supported the US Nuclear Regulatory Commission’s
(NRC’s) reassessment of the risk from commercial nuclear
power plants (i.e., NUREG-1150; see Refs. [82,120–124]).

3. Generation of sample

Several sampling strategies are available, including
random sampling, importance sampling, and Latin hyper-
cube sampling [44,55] Latin hypercube sampling is very
popular for use with computationally demanding models
because its efficient stratification properties allow for the
extraction of a large amount of uncertainty and sensitivity
information with a relatively small sample size.
Latin hypercube sampling operates in the following

manner to generate a sample of size nS from the
distributions D1, D2,y,DnX associated with the elements
of x ¼ ½x1;x2; . . . ;xnX �. The range of each xj is exhaustively
divided into nS disjoint intervals of equal probability and
one value xij is randomly selected from each interval. The
nS values for x1 are randomly paired without replacement
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Fig. 1. Characterization of epistemic uncertainty: (a) construction of CDF

from specified quantile values (Ref. [101, Fig. 4.1]), and (b) construction of

mean CDF by vertical averaging of CDFs defined by individual experts

with equal weight (i.e., 1=nE ¼ 1=3, where nE ¼ 3 is the number of

experts) given to each expert (Ref. [101, Fig. 4.2]).
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with the nS value for x2 to produce nS pairs. These
pairs are then randomly combined without replacement
with the nS values for x3 to produce nS triples. This
process is continued until a set of nS nX-tuples xi ¼

½xi1;xi2; . . . ;xi;nX �, i ¼ 1, 2,y,nS, is obtained, with this set
constituting the Latin hypercube sample (Fig. 2).

Latin hypercube sampling is a good choice for a
sampling procedure when computationally demanding
models are being studied. The popularity of Latin
hypercube sampling recently led to the original article
being designated a Technometrics classic in experimental
design [125]. When the model is not computationally
demanding, many model evaluations can be performed and
random sampling works as well as Latin hypercube
sampling.
If large sample sizes are required to provide appropriate

coverage of low probability/high consequence subsets of
values for x, then importance sampling may be a more
effective sampling procedure than either random or Latin
hypercube sampling [126–134]. However, importance
sampling complicates sensitivity analysis (Section 6) as
the individual sample elements do not have equal weight
(i.e., likelihood of occurrence). Often, some type of
importance sampling is used to sample from aleatory
uncertainty (e.g., possibly implemented through the use of
event trees as is typically the case in probabilistic risk
assessments for complex engineered facilities such as
nuclear plants) and Latin hypercube sampling is used to
sample from epistemic uncertainty. The NUREG-1150
analyses (see Refs. [82,120–124]) are an example of this
approach to the propagation of uncertainty.
Control of correlations is an important aspect of sample

generation. Specifically, correlated variables should have
correlations close to their specified values, and uncorre-
lated variables should have correlations close to zero. In
general, the imposition of complex correlation structures is
not easy. However, Iman and Conover have developed a
broadly applicable procedure to impose rank correlations
on sampled values that (i) is distribution free (i.e., does
not depend on the assumed marginal distributions for
the sampled variables), (ii) can impose complex correla-
tion structures involving multiple variables, (iii) works
with both random and Latin hypercube sampling, and
(iv) preserves the intervals used in Latin hypercube
sampling [135,136]. Details on the implementation of the
procedure are available in the original reference; [135]
illustrative results are provided in Fig. 3 [137].
The analysis involving the variables in Table 1 used three

independently generated (i.e., replicated) Latin hypercube
samples of size nS ¼ 100 each. The purpose of the
replication was to provide a basis for testing the stability
of uncertainty and sensitivity analysis results obtained with
Latin hypercube sampling (Ref. [108, Sections 7 and 8]).
The Iman/Conover restricted pairing technique indicated
in the preceding paragraph was used to control correlations
within the individual samples. The analyses with the three
replicated samples were sufficiently similar that each
analysis would have independently lead to the same
insights with respect to model behavior [138]. However,
to make full use of all model evaluations, final presentation
results [103,104] were calculated with the three replicated
samples pooled together to produce a single sample of size
nS ¼ 300.
Additional information: Ref. [46, Section 6.3],

Refs. [44,50,54,55,139].

4. Propagation of sample through the analysis

Propagation of the sample through the analysis to
produce the mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS, from
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Table 1

Uncertain variables x1, x2, y, x31 and associated uncertainty distributions D1, D2, y, D31 used in illustration of uncertainty and sensitivity analysis

procedures for two phase flow model (Ref. [138, Table 1])

ANHBCEXP—Brooks–Corey pore distribution parameter for anhydrite (dimensionless). Distribution: Student’s with 5 degree of freedom. Range:

0.491–0.842. Mean, median: 0.644.

ANHBCVGP—Pointer variable for selection of relative permeability model for use in anhydrite. Distribution: Discrete with 60% 0, 40% 1. Value of 0

implies Brooks–Corey model; value of 1 implies van Genuchten–Parker model.

ANHCOMP—Bulk compressibility of anhydrite (PA�1). Distribution: Student’s with 3 degrees of freedom. Range: 1.09� 10�11–2.75� 10�10 Pa�1. Mean,

median: 8.26� 10�11 Pa�1. Correlation: �0.99 rank correlation [23] with ANHPRM. Variable 21 in LHS.

ANHPRM—Logarithm of anhydrite permeability (m2). Distribution: Student’s with 5 degrees of freedom. Range:�21.0–�17.1 (i.e., permeability range is

1� 10�21–1� 10�17.1m2). Mean, median: �18.9. Correlation: �0.99 rank correlation with ANHCOMP.

ANRBRSAT—Residual brine saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of freedom. Range: 7.85� 10�3–1.74� 10�1.

Mean, median: 8.36� 10�2.

ANRGSSAT—Residual gas saturation in anhydrite (dimensionless). Distribution: Student’s with 5 degrees of freedom. Range 1.39� 10�2–1.79� 10�1.

Mean, median: 7.71� 10�2.

BHPRM—Logarithm of borehole permeability (m2). Distribution: Uniform. Range: �14 to �11 (i.e., permeability range is 1� 10�14–1� 10�11m2).

Mean, median: �12.5.

BPCOMP—Logarithm of bulk compressibility of brine pocket (Pa�1). Distribution: triangular. Range: �11.3 to �8.00 (i.e., bulk compressibility range is

1� 10�11.3–1� 10�8 Pa�1). Mean, mode: �9.80, �10.0. Correlation: �0.75 rank correlation with BPPRM.

BPINTPRS—Initial pressure in brine pocket (Pa). Distribution: triangular. Range: 1.11� 107–1.70� 107 Pa. Mean, mode: 1.36� 107, 1.27� 107 Pa.

BPPRM—Logarithm of intrinsic brine pocket permeability (m2). Distribution: triangular. Range: �14.7 to �9.80 (i.e., permeability range is 1� 10�14.7

–1� 10�9.80m2). Mean, mode: �12.1, �11.8. Correlation: �0.75 rank correlation with BPCOMP.

BPVOL–Pointer variable for selection of brine pocket volume. Distribution: discrete, with integer values 1, 2, y, 32 equally likely.

HALCOMP—Bulk compressibility of halite (Pa�1). Distribution: Uniform. Range: 2.94� 10�12–1.92� 10�10 Pa�1. Mean, median: 9.75� 10�11 Pa�1,

9.75� 10�11 Pa�1. Correlation: �0.99 rank correlation with HALPRM.

HALPOR—Halite porosity (dimensionless). Distribution: Piecewise uniform. Range: 1.0� 10�3–3� 10�2. Mean, median: 1.28� 10�2, 1.00� 10�2.

HALPRM–Logarithm of halite permeability (m2). Distribution: Uniform. Range: �24 to�21 (i.e., permeability range is 1� 10�24 to 1� 10�21m2). Mean,

median: �22.5, �22.5. Correlation: �0.99 rank correlation with HALCOMP.

SALPRES–Initial brine pressure, without the repository being present, at a reference point located in the center of the combined shafts at the elevation of

the midpoint of MB 139 (Pa). Distribution: Uniform. Range: 1.104� 107–1.389� 107 Pa. 1.247� 107 Pa.

SHBCEXP—Brooke-Corey pore distribution parameter for shaft (dimensionless). Distribution: Piecewise uniform. Range: 0.11–8.10. Mean, median:

2.52, 0.94.

SHPRMASP—Logarithm of permeability (m2) of asphalt component of shaft seal (m2). Distribution: Triangular. Range: �21–�18 (i.e., permeability

range is 1� 10�21–1� 10�18m2). Mean, mode: �19.7, �20.0.

SHPRMCLY—Logarithm of permeability (m2) for clay components of shaft. Distribution: Triangular. Range: �21–�17.3 (i.e., permeability range is

1� 10�21–1� 10�17.3m2). Mean, mode: �18.9, �18.3.

SHPRMCON—Same as SHPRMASP but for concrete component of shaft seal for 0 � 400 yr.Distribution: Triangular. Range: �17.0–�14.0 (i.e.,

permeability range is 1� 10�17–1� 10�14m2). Mean, mode: �15.3, �15.0.

SHPRMDRZ–Logarithm of permeability (m2) of DRZ surrounding shaft. Distribution: Triangular. Range: �17.0–�14.0 (i.e., permeability range is

1� 10�17–1� 10�14m2). Mean, mode: �15.3, �15.0.

SHPRMHAL–Pointer variable (dimensionless) used to select permeability in crushed salt component of shaft seal at different times. Distribution:

Uniform. Range: 0–1. Mean, mode: 0.5, 0.5. A distribution of permeability (m2) in the crushed salt component of the shaft seal is defined for each of the

following time intervals: [0, 10 yr], [10,25 yr], [25,50 yr], [50,100 yr], [100,200 yr], [200,10,000 yr]10,200. SHPRMHAL is used to select a permeability value

from the cumulative distribution function for permeability for each of the preceding time intervals with result that a rank correlation of 1 exists between

the permeabilities used for the individual time intervals.

SHRBRSAT—Residual brine saturation in shaft (dimensionless). Distribution: Uniform. Range: 0–0.4. Mean, median: 0.2, 0.2.

SHRGSSAT—Residual gas saturation in shaft (dimensionless). Distribution: Uniform. Range: 0–0.4. Mean, median: 0.2, 0.2.

WASTWICK—Increase in brine saturation of waste owing to capillary forces (dimensionless). Distribution: Uniform: Range: 0–1. Mean, median: 0.5, 0.5.

WFBETCEL—Scale factor used in definition of stoichiometric coefficient for microbial gas generation (dimensionless). Distribution: Uniform. Range:

0–1. Mean, median: 0.5, 0.5.

WGRCOR–Corrosion rate for steel under inundated conditions in the absence of CO2 (m/s). Distribution: Uniform. Range: 0–1.58� 10�14m/s. Mean,

median: 7.94� 10�15m/s, 7.94� 10�15m/s.

WGRMICH—Microbial degradation rate for cellulose under humid conditions (mol/kg s). Distribution: Uniform. Range: 0–1.27� 10�9mol/kg s. Mean,

median: 6.34� 10�10mol/kg s, 6.34� 10�10mol/kg s.

WGRMICI—Microbial degradation rate for cellulose under inundated conditions (mol/kg s). Distribution: Uniform. Range: 3.17� 10�10–9.51� 10�9

mol/kg s. Mean, median: 4.92� 10�9mol/kg s, 4.92� 10�9mol/kg s.

WMICDFLG–Pointer variable for microbial degradation of cellulose. Distribution: Discrete, with 50% 0, 25% 1, 25% 2, WMICDFLG ¼ 0, 1, 2, implies

no microbial degradation of cellulose, microbial degradation of only cellulose, microbial degradation of cellulose, plastic and rubber.

WRBRNSAT—Residual brine saturation in waste (dimensionless). Distribution: Uniform. Range: 0–0.552. Mean, median: 0.276, 0.276.

WRGSSAT—Residual gas saturation i n waste (dimensionless). Distribution: Uniform. Range: 0–0.15. Mean, median: 0.075, 0.075.
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analysis inputs to analysis results is often the
most computationally demanding part of a sampling-
based uncertainty and sensitivity analysis. The details
of this propagation are analysis specific and can
range from very simple for analyses that involve a
single model to very complicated for large analyses
that involve complex systems of linked models
[82,107].
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Fig. 2. Example of Latin hypercube sampling to generate a sample of size nS ¼ 5 from x ¼ ½U ;V � with U normal on [�1, 1] (mean ¼ 0.0; 0.01

quantile ¼ �1; 0.99 quantile ¼ 1) and V triangular on [0, 4] (mode ¼ 1): (a, b) Upper frames illustrate sampling of values for U and V, and (c, d) Lower

frames illustrate two different pairings of the sampled values of U and V in the construction of an LHS (Ref. [101, Fig. 5.3]).
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When a single model is under consideration, this part of
the analysis can involve little more than putting a DO loop
around the model that (i) supplies the sampled input to the
model, (ii) runs the model, and (iii) stores model results for
later analysis. When more complex analyses with multiple
models are involved, considerable sophistication may be
required in this part of the analysis. Implementation of
such analyses can involve (i) development of simplified
models to approximate more complex models, (ii) cluster-
ing of results at model interfaces, (ii) reuse of model
results through interpolation or linearity properties, and
(iv) complex procedures for the storage and retrieval of
analysis results.

Additional information: The NUREG-1150 analyses
[82,93–100,109,119], the analyses carried out in support
of the Compliance Certification Application for the Waste
Isolation Pilot Plant [105–107], and analyses carried
out in support of the Yucca Mountain Project’s develop-
ment of a facility for the deep geologic disposal of high
level radioactive waste [140–142] provide examples of
complex analyses that have used Latin hypercube sampling
in the propagation of epistemic uncertainty.

5. Presentation of uncertainty analysis results

Presentation of uncertainty analysis results is generally
straight forward and involves little more than displaying
the results associated with the already calculated mapp-
ing [xi, y(xi)], i ¼ 1; 2; . . . ; nS. Presentation possibilities
include means and standard deviations, density functions,
CDFs, complementary cumulative distribution functions
(CCDFs), and box plots. Presentation formats such as
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Fig. 3. Examples of rank correlations of 0.00, 0.25, 0.50, 0.75, 0.90 and 0.99 imposed with the Iman/Conover restricted pairing technique for an LHS of

size nS ¼ 1000 (Ref. [137, Fig. 5.1]).
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CDFs (Fig. 4a), CCDFs (Fig. 4a) and box plots (Fig. 4b)
are usually preferable to means and standard deviations
because of the large amount of uncertainty information
that is lost in the calculation of means and standard
deviations (see Table 2 for definitions of dependent
variables used to illustrate uncertainty and sensitivity
analysis procedures). Owing to their flattened shape, box
plots are particularly useful when it is desired to the display
and compare the uncertainty in a number of related
variables.

The representational challenge is more complex when the
analysis outcome of interest is a function rather than a
scalar. For example, time-dependent system properties are
common analysis outcomes. As another example, a CCDF
that summarizes the effects of aleatory uncertainty is a
standard analysis outcome in risk assessments. An effective
display format for such analysis outcomes is to use two
plot frames, with first frame displaying the analysis results
for the individual sample elements and the second frame
displaying summary results for the outcomes in the first
frame (e.g., quantiles and means) (Fig. 5).
Additional information: Ref. [46, Section 6.4];
Refs. [143,144].

6. Determination of sensitivity analysis results

Determination of sensitivity analysis results is usually
more demanding than the presentation of uncertainty
analysis results due to the need to actually explore the
mapping [xi, y(xi)], i ¼ 1; 2; . . . ; nS, to assess the effects of
individual elements of x on the elements of y. A number of
approaches to sensitivity analysis that can be used in
conjunction with a sampling-based uncertainty analysis are
briefly summarized in this section. In this summary, (i) xj is
an element of x ¼ ½x1;x2; . . . ;xnX �, (ii) y is an element of
yðxÞ ¼ ½y1ðxÞ; y2ðxÞ; . . . ; ynY ðxÞ�, (iii) xi ¼ ½xi1;xi2; . . . ;xi;nX �,
i ¼ 1; 2; . . . ; nS, is a random or Latin hypercube sample
from the possible values for x generated in consistency with
the joint distribution assigned to the xj’s, (iv) yi ¼ yðxiÞ for
i ¼ 1; 2; . . . ; nS, and (v) xij and yi are elements of xi and yi,
respectively. Sensitivity analyses usually consider the
effects of all elements of x on individual elements of y;
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for this reason and for notational simplification, the
subscripted variables xj, j ¼ 1; 2; . . . ; nX , are used to
represent the elements of x but the unsubscripted variable
y is used to represent an arbitrary element of y.

6.1. Scatterplots

A plot of the points [xij, yi] for i ¼ 1; 2; . . . ; nS (i.e., a
scatterplot of y versus xj) can reveal nonlinear or other
unexpected relationships between analysis inputs and
analysis results (Fig. 6). Scatterplots are a natural starting
point in a complex analysis that can help in the
development of a sensitivity analysis strategy using one
or more additional techniques. Often, the examination of
scatterplots is all that is needed to understand the
relationships between the uncertainty in analysis inputs
and the uncertainty in analysis results [145].
Most analyses start with two dimensional scatterplots.

However, when strong three-way interactions between
variables are present, three-dimensional scatterplots (i.e.,
scatterplots involving three variables) can provide infor-
mative displays of analysis results (Fig. 7). The three-
dimensional scatterplot in Fig. 7 involves one sampled
variable (i.e., xj ¼WPRTDIAM) and two calculated
variables (i.e., yk ¼WAS_PRES and yl ¼ REL_VOL).
The result in Fig. 7 was calculated by a model that uses
the calculated value for WAS_PRES under undisturbed
conditions as an input and then determines the volume of
material (i.e., REL_VOL) released to the surface at the
time of a drilling intrusion due to a pressure-driven
spallings event; WPRTDIAM is one of the uncertain
(i.e., sampled) variables used in this calculation [145]
Specifically, Fig. 7 contains a plot of the points (xij, yik, yil)
for i ¼ 1; 2; . . . ; nS. As examination of Fig. 7 shows,
(i) WAS_PRES acts as a switch that determines if
REL_PRES is nonzero, and (ii) WPRTDIAM determines
the magnitude of the nonzero values for REL_PRES.
Because of the large number of possible three-way variable
combinations in most analyses, some initial insights with
respect to variable interactions usually needs to be
developed before a reasonable selection of three-dimen-
sional scatterplots can be made.
Additional information: Ref. [46, Section 6.6.1]; see

Ref. [146] for additional plotting formats, including
cobweb plots which provide a representation of multi-
dimensional results (e.g., [xi, yi] ¼ [xi1, xi2, y, xi,nX, yi],
i ¼ 1; 2; . . . ; nS) in a two-dimensional plot.

6.2. Correlation

Correlation provides a measure of the strength of the
linear relationship between xj and y. Specifically, the
(Pearson or sample) correlation coefficient (CC) c(xj, y)
between xj and y is defined by

cðxj ; yÞ ¼

PnS
i¼1ðxij � x̄jÞðyi � ȳÞPnS

i¼1ðxij � x̄jÞ
2

h i1=2 PnS
i¼1ðyi � ȳÞ2

h i1=2 , (1)

where

x̄j ¼
XnS

i¼1

xij=nS and ȳ ¼
XnS

i¼1

yi=nS.

The CC c(xj, y) has a value between �1 and 1, with a
positive value indicating that xj and y tend to increase and
decrease together and a negative value indicating that xj

and y tend to move in opposite directions. Further,
gradations in the absolute value of c(xj, y) between 0 and
1 correspond to a trend from no linear relationship
between xj and y to an exact linear relationship between
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Table 2

Definition of dependent variables calculated by BRAGFLO program for two phase flow and used in the illustration of uncertainty and sensitivity analysis

procedures

BNBHDNUZ—Cumulative brine flow (m3) down borehole at Market Bed (MB) 138 (i.e., from cell 223 to cell 575 in Ref. [102, Fig. 3]).

BRAABNIC—Cumulative brine flow (m3) out of north anhydrites A and B into disturbed rock zone (DRZ) (i.e., from cells 556 to cell 527 in Ref. [102,

Fig. 3]).

BRAABSIC—Cumulative brine flow (m3) out of south anhydrites A and B into DRZ (i.e., from cell 555 to cell 482 in Ref. [102, Fig. 3]).

BRAALIC—Cumulative brine flow (m3) out of all MBs into DRZ (i.e.,

BRAALIC ¼ BRM38NIC+BRAABNIC+BRM39NIC+BRM38SIC+BRAABSIC+BRM39SIC).

BRM38NIC—Cumulative brine flow (m3) out of north MB138 into DRZ (i.e., from cells 588 to 587 in Ref. [102, Fig. 3]).

BRM38SIC—Cumulative brine flow (m3) out of south MB138 into DRZ (i.e., from cell 571 to cell 572 in Ref. [102, Fig. 3]).

BRM39NIC–Cumulative brine flow (m3) out of north MB139 to DRZ (i.e., from cells 540 to 465 in Ref. [102, Fig. 3]).

BRM39SIC—Cumulative brine flow (m3) out of south MB139 into DRZ (i.e., from cell 539 to cell 436 in Fig. 3, Ref. [102]).

BRNREPTC—Cumulative brine flow (m3) into repository (i.e., into regions corresponding to cells 596–625, 638–640 in Ref. [102, Fig. 3]).

REP_SATB—Brine saturation in upper waste panels (i.e., average brine saturation calculated over cells 617–625 in Ref. [102, Fig. 3]).

WAS_PRES—Pressure (Pa) in lower waste panel (i.e., average pressure calculated over cells 596–616 in Ref. [102, Fig. 3]).

WAS_SATB—Brine saturation in lower waste panel (i.e., average brine saturation calculated over cells 596–616 in Ref. [102, Fig. 3])

The designator E0 is used to indicate results calculated for undisturbed conditions, and the designator E2 is used to indicate results calculated for disturbed

conditions due to a drilling intrusion that penetrates the lower waste panel of the repository 1000 yr after repository closure. Further, the designator R1

indicates results calculated for the first of the three replicated Latin hypercube samples described in Section 3, and the designators R1, R2, R3 collectively

are used to indicate results calculated with the three replicates pooled together.
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xj and y. As an example, the CCs associated with the
scatterplots in Fig. 8 are c(HALPOR, REP_SATB) ¼
0.75 (Fig. 8a) and c(WGRCOR, REP_SATB) ¼ �0.41
(Fig. 8b).

The CC c(xj, y) is closely related to results obtained
in a linear regression relating y to xj. Specifically, c(xj, y)
is equal to the standardized regression coefficient
(SRC) in the indicated regression, and the absolute
value of c(xj, y) is equal to the square root of the
corresponding R2 value (see Section 6.3). As a correlation
of 0 only indicates the absence of a linear association
between xj and y, it does not preclude the existence
of a well-defined nonlinear relationship between xj and y

(e.g., y ¼ sin xj).
Additional information: Ref. [46, Section 6.6.4].

6.3. Regression analysis

Regression analysis provides an algebraic representation
of the relationships between y and one or more of the xj’s.
Unless stated otherwise, regression analysis is usually
assumed to involve the construction of linear models of
the form

ŷ ¼ b0 þ bjxj (2)

for a single independent variable (i.e., xj) and

ŷ ¼ b0 þ
XnX

j¼1

bjxj (3)

for multiple independent variables (i.e., x1, x2, y, xnX).
The regression coefficients in Eqs. (2) and (3) are
determined such that the sums

XnS

i¼1

ðyi � ŷiÞ
2
¼
XnS

i¼1

½yi � ðb0 þ bjxijÞ�
2 (4)
and

XnS

i¼1

ðyi � ŷiÞ
2
¼
XnS

i¼1

yi � b0 þ
XnS

j¼1

bjxij

 !" #2
, (5)

respectively, are minimized. As a result, the regression
models in Eqs. (2) and (3) are often referred to as least-
squares models due to the minimization of the sums of
squares in Eqs. (4) and (5).
As important property of least squares regression models

is the equality

XnS

i¼1

ðyi � ȳÞ2 ¼
XnS

i¼1

ðŷi � ȳÞ2 þ
XnS

i¼1

ðŷi � yiÞ
2. (6)

For notational convenience, the preceding equality is often
written

SStot ¼ SSreg þ SSres, (7)

where

SStot ¼
XnS

i¼1

ðyi � ȳÞ2; SSreg ¼
XnS

i¼1

ðŷi � ȳÞ2,

SSres ¼
XnS

i¼1

ðŷi � yÞ2

and the three preceding summations are called the total
sum of squares (SStot), regression sum of squares (SSreg)
and residual sum of squares (SSres), respectively.
Since SSres provides a measure of variability about the

regression model, the ratio

R2 ¼ SSreg=SStot ¼
XnS

i¼1

ðŷi � ȳÞ2

,XnS

i¼1

ðyi � ȳÞ2 (8)

provides a measure of the extent to which the regression
model can match the observed data. Specifically, when the
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Fig. 5. Representation of uncertainty in analysis results that are functions: (a, b) Pressure as a function of time (Ref. [101, Figs. 7.5, 7.9]), and (c, d) effects

of aleatory uncertainty summarized as a CCDF (Ref. [101, Fig. 10.5]).

J.C. Helton et al. / Reliability Engineering and System Safety ] (]]]]) ]]]–]]] 9
variation about the regression model is small (i.e., SSres is
small relative to SSreg), then the corresponding R2 value
is close to 1, which indicates that the regression model is
accounting for most of the uncertainty in y. Conversely, an
R2 value close to 0 indicates that the regression model is
not very successful in accounting for the uncertainty in y.
When the individual xj in the regression model in Eq. (3)
are independent, the R2 value for the regression model can
be expressed as

R2 ¼ SSreg=SStot ¼ R2
1 þ R2

2 þ � � � þ R2
nX , (9)

where R2
j is the R2 value that results from regressing y on

only xj. Thus, R2
j is equal to the contribution of xj to the R2

value for the regression model in Eq. (3) when the xj’s are
independent.

The regression coefficients bj, j ¼ 1; 2; . . . ; nX , are not
very useful in sensitivity analysis because each bj is
influenced by the units in which xj is expressed and also
does not incorporate any information on the distribution
assigned to xj. Because of this, the regression models in
Eqs. (2) and (3) are usually reformulated as

ðŷ� ȳÞ=ŝ ¼ ðbjŝj=ŝÞðxj � x̄jÞ=ŝj (10)

and

ðŷ� ȳÞ=ŝ ¼
XnX

j¼1

ðbjŝj=ŝÞðxj � x̄jÞ=ŝj, (11)

respectively, where

ŝ ¼
XnS

i¼1

ðyi � ȳÞ2=ðnS � 1Þ

" #1=2
,

ŝj ¼
XnS

i¼1

ðxij � x̄jÞ
2=ðnS � 1Þ

" #1=2
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Fig. 6. Examples of scatterplots obtained in a sampling-based uncer-

tainty/sensitivity analysis (Ref. [101, Figs. 8.1, 8.2]).

Fig. 7. Example of three-dimensional scatterplot obtained in a sampling-

based uncertainty/sensitivity analysis (Ref. [145, Fig. 13]).
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and ȳ and x̄j are defined in conjunction with Eq. (1). The
coefficients bjŝj/s in Eqs. (10) and (11) are referred to as
SRCs.

When the regression models in Eqs. (2) and (10)
involving only xj are under consideration, the SRC bjŝj/ŝ
provides a measure of variable importance based on the
effect on y relative to the standard deviation ŝ of y of
moving xj away from its expected value x̄j by a fixed
fraction of its standard deviation ŝj. Further, when the xj’s
are independent, the inclusion or exclusion of an individual
xj from the regression models in Eqs. (3) and (11) has no
effect on the SRCs for the remaining variables in the
model. Thus, as long as the xj’s are independent, the SRCs
bjŝj/ŝ in Eq. (11) provide a useful measure of variable
importance, with (i) the absolute values of the coefficients
bjŝj/ŝ providing a comparative measure of variable im-
portance (i.e., variable xu is more important than variable
xv if jbuŝu/ŝj4jbvŝv/ŝj) and (ii) the sign of bjŝj/ŝ indicating
whether xj and y tend to move in the same direction or in
opposite directions. However, when xj’s are not indepen-
dent, SRCs do not provide reliable indications of variable
importance (Ref. [46, Section 6.6.7]).
For purposes of sensitivity analysis, there is usually no

reason to construct a regression model containing all the
uncertain variables (i.e., x1, x2, y, xnX) as indicated in
Eqs. (3) and (11). Rather, a more appropriate procedure is
to construct regression models in a stepwise manner. With
this procedure, a regression model is first constructed with
the most influential variable (e.g., ~x1 as determined based
on R2 values for regression models containing only single
variables). Then, a regression model is constructed with
~x1 and the next most influential variable (e.g., ~x2 as
determined based on R2 values for regression models
containing ~x1 and each of the remaining variables). The
process then repeats to determine ~x3 in a similar manner
and continues until no more variables with an identifiable
effect on y can be found. Variable importance (i.e.,
sensitivity) is then indicated by the order in which variables
are selected in the stepwise process, the changes in
cumulative R2 values as additional variables are added to
the regression model, and the SRCs for the variables in the
final regression model. An example of a sensitivity analysis
of this form is presented in Table 3.
A display of regression results of the form shown in

Table 3 is very unwieldy when results at a sequence of times
are under consideration. In this situation, a more compact
display of regression results is provided by plotting SRCs
as functions of time for all xj that appear to have a
significant effect on y at some point in the time interval
under consideration (Fig. 9a).
This section only considers linear regression models.

However, linear regression models also include models of
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Fig. 8. Illustration of correlation coefficients: (a) c(xj, y) ¼ 0.75 with

xj ¼ HALPOR and y ¼ REP_SATB (left frame), and (b) c(xj, y) ¼ �0.41

with xj ¼WGRCOR and y ¼ REP_SATB (right frame).

Table 3

Example of stepwise regression analysis to identify uncertain variables

affecting the uncertainty in pressure (WAS_PRES) at 10,000 yr in Fig. 5a

(Ref. [101, Table 8.6])

Stepa Variableb SRCc R2d

1 WMICDFLG 0.718 0.508

2 HALPOR 0.466 0.732

3 WGRCOR 0.246 0.792

4 ANHPRM 0.129 0.809

5 SHRGSSAT 0.070 0.814

6 SALPRES 0.063 0.818

aSteps in stepwise regression analysis.
bVariables listed in the order of selection in regression analysis.
cSRCs for variables in final regression model.
dCumulative R2 value with entry of each variable into regression model.
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forms such as

ŷ ¼ b0 þ
XnX

j¼1

bjf jðxjÞ þ
XnX

j¼1

XnX

l¼j

bjl f jlðxj ;xlÞ. (12)

This inclusion exists because the preceding model is
linear in its coefficients (i.e., b0, the bj, the bjl); in essence,
the indicated transformations involving the xj (i.e., fj(xj),
fjl(xj, xl)) are simply defining a new set of analysis inputs to
be used in a regression-based sensitivity analysis. Results
can be improved in some analyses by well-chosen variable
transformations of the form indicated in Eq. (12).
However, in large analyses involving many uncertain
analysis inputs (i.e., xj) and many possibly time-dependent
analysis results (i.e., many different elements of y), the a
priori determination of suitable transformations can be
difficult. Also, care can be taken to suitably account for
any correlations that may be introduced by the chosen
transformations (i.e., fj(xj) and fjl(xj, xl) may be highly
correlated).
Nonlinear regression provides an alternative to linear

regression that can be useful in some analyses. In nonlinear
regression, at least some of the model coefficients are
operated on by nonlinear functions. For example,

ŷ ¼ b0 þ b1 expðb2x1Þ þ b3 sinðb4x2Þ (13)

is a nonlinear model because b2 and b4 appear in
expressions that are operated on by nonlinear functions.
A major challenge in the use of nonlinear regression in
sensitivity analysis is the determination of a suitable form
for the nonlinear regression model. The following two
alternatives to nonlinear regression for use in the presence
of nonlinear relationships between model inputs (i.e., the
xj) and model results (i.e., the elements of y) that place
fewer a priori demands on the analyst are described later in
this presentation: rank transformations (Section 6.5) and
nonparametric regression (Section 6.8).
Additional information: Ref. [46, Sections 6.6.2,

6.6.3, and 6.6.5]. Further, general information on
regression analysis is available in a number of texts (e.g.,
Refs. [147–151]).

6.4. Partial correlation

The partial correlation coefficient (PCC) between xj and
y can be defined in the following manner. First, the two
regression models indicated below are constructed:

x̂j ¼ c0 þ
XnX

p¼1
paj

cpxp and ŷ ¼ b0 þ
XnX

p¼1
paj

bpxp. (14)

Then, the results of the two preceding regressions are
used to define the new variables xj � x̂j and y� ŷ. The
PCC between xj and y is the CC cðxj � x̂j ; y� ŷÞ (see
Eq. (1)) between xj � x̂j and y� ŷ. As for SRCs, PCCs are
often defined for variables that are functions of time and
presented as time-dependent plots (Fig. 9b).
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Fig. 9. Time-dependent sensitivity analysis results for uncertain pressure

curves in Fig. 5a: (a) SRCs as a function of time, and (b) PCCs as a

function of time (Ref. [101, Fig. 8.3]).
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The PCC characterizes the linear relationship between xj

and y after a correction has been made for the linear effects
on y of the remaining elements of x, and the SRC
characterize the effect on y that results from perturbing
xj by a fixed fraction of its standard deviation. Thus, PCCs
and SRCs provide related, but not identical, measures of
variable importance. In particular, the PCC between xj and
y provides a measure of variable importance that tends to
exclude the effects of the other elements of x, the assumed
distribution for xj, and the magnitude of the impact of the
uncertainty in xj on the uncertainty in y. In contrast, the
SRC relating xj to y is more influenced by the distribution
assigned to xj and the magnitude of the impact of the
uncertainty in xj on the uncertainty in y. However, when
the elements of x are independent, PCCs and SRCs give the
same rankings of variable importance. Specifically, an
ordering of variable importance based on the absolute
value of PCCs is the same as an ordering based on either
the absolute value of CCs or the absolute value of SRCs
(Ref. [46, Section 6.6.4]). A cosmetic benefit of using PCCs
is that PCCs tend to be spread out in value more than
SRCs and thus produce results that are easier to read (e.g.,
compare Figs. 9a and b); however, the downside to this is
that a variable can appear to have a larger effect on the
uncertainty in y than is actually the case.
As for analyses based on SRCs, analyses based on

PCCs can give very misleading results when correlations
exist between the elements of x. Specifically, if x contains
two highly correlated variables, then each variable will
cancel the other’s effect when PCCs with y are calculated.
Additional information: Ref. [46, Section 6.6.4];

Ref. [152].

6.5. Rank transformations

A rank transformation can be used to convert a
nonlinear but monotonic relationship between the xj and
y into a linear relationship. With this transformation, the
values for the xj and y are replaced by their corresponding
ranks. Specifically, the smallest value for a variable is
assigned a rank of 1; the next largest value is assigned a
rank of 2; tied values are assigned their average rank; and
so on up to the largest value, which is assigned a rank of
nS. Use of the rank transformation results in rank (i.e.,
Spearman) correlation coefficients (RCCs), rank regres-
sions, standardized rank regression coefficients (SRRCs)
and partial rank correlation coefficients (PRCCs). In
the presence of nonlinear but monotonic relationships
between the xj and y, use of the rank transform can
substantially improve the resolution of sensitivity analysis
results (Table 4).
Additional information: Ref. [46, Section 6.6.6];

Ref. [153].

6.6. Statistical tests for patterns based on gridding

Analyses based on raw or rank-transformed data can fail
when the underlying relationships between the xj and y are
nonlinear and nonmonotonic (Fig. 10). The scatterplot in
Fig. 6b is for the pressure at 10,000 yr in Fig. 10a versus the
uncertain variable BHPRM. The partial correlation
analyses summarized in Fig. 10b fail at later times because
the pattern appearing in Fig. 6b is too complex to be
captured with a partial correlation analysis based on raw or
rank-transformed data; analyses with SRCs or SRRCs also
fail for the same reason. An alternative analysis strategy for
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Table 4

Comparison of stepwise regression analyses with raw and rank-transformed data for cumulative brine inflow to vicinity of repository over 10,000 yr from

anhydrite marker beds (BRAALIC) under undisturbed (i.e., E0) conditions in Fig. 4b (Ref. [101, Table 8.8])

Stepa Raw data Rank-transformed data

Variableb SRCc R2d Variableb SRRCe R2d

1 ANHPRM 0.562 0.320 WMICDFLG �0.656 0.425

2 WMICDFLG �0.309 0.423 ANHPRM 0.593 0.766

3 WGRCOR �0.164 0.449 HALPOR �0.155 0.802

4 WASTWICK �0.145 0.471 WGRCOR �0.152 0.824

5 ANHBCEXP �0.120 0.486 HALPRM 0.143 0.845

6 HALPOR �0.101 0.496 SALPRES 0.120 0.860

7 WASTWICK �0.010 0.869

aSteps in stepwise regression analysis.
bVariables listed in order of selection in regression analysis.
cSRCs for variables in final regression model.
dCumulative R2 value with entry of each variable into regression model.
eSRRCs for variables in final regression model.
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Fig. 10. Illustration of failure of a sensitivity analysis based on rank-

transformed data: (a) pressures as a function of time and (b) PRCCs as a

function of time (Ref. [101, Fig. 8.7]).
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situations of this type is to place grids on the scatterplot for
y and xj and then perform various statistical tests to
determine if the distribution of points across the grid cells
appears to be nonrandom. Appearance of a nonrandom
pattern indicates that xj has an effect on y. Possibilities
include tests for (i) common means (CMNs), (ii) common
distributions or locations (CLs), (iii) common medians
(CMDs), and (iv) statistical independence (SI). Descrip-
tions of these tests follow.
The CMNs test is based on dividing the values of xj (i.e.,

xij, i ¼ 1; 2; . . . ; nS) into nI classes and then testing to
determine if y has a CMN across these classes (Ref. [154,
Section 3.1]). The required classes are obtained by dividing
the range of xj into a sequence of mutually exclusive
and exhaustive subintervals containing equal numbers of
sampled values (Fig. 11a). If xj is discrete, individual
classes are defined for each of the distinct values. For
notational convenience, let c, c ¼ 1; 2; . . . ; nI , designate the
individual classes into which the values of xj have been
divided; let Xc designate the set such that iAXc only if xij

belongs to class c; and let nIc equal the number of elements
contained in Xc (i.e., the number of xij’s associated with
class c).
The F-test can be used to test for the equality of the

mean values of y for the classes into which the values of xj

have been divided (e.g., the intervals defined on the
abscissa of the scatterplot in Fig. 11a). Specifically, if the
y values conditional on each class of xj values are normally
distributed with equal expected values, then

F ¼

PnI
c¼1nIcȳ2

c � nSȳ2
h i.

ðnI � 1ÞPnS
i¼1y

2
i �

PnI
c¼1nIcȳ2

c

h i.
ðnS � nIÞ

(15)

follows an F-distribution with (nI–1, nS–nI) degrees of
freedom, where ȳc ¼

P
i2Xc

yi=nIc and ȳ is defined in
conjunction with Eq. (1). Given that the indicated
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Fig. 11. Grids used to test for nonrandom patterns: (a) partitioning of

range of xj for CMNs and CLs tests and ranges of xj and y for CMDs test

(Ref. [101, Fig. 8.8]), and (b) partitioning of ranges of xj and y for SI (Ref.

[101, Fig. 8.9]).
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assumptions hold, the probability probF ð
~F4F j nI–1,

nS–nI) of obtaining an F-statistic of value ~F that exceeds
the value of F in Eq. (15) can be obtained from an F-
distribution with (nI–1, nS–nI) degrees of freedom. A low
probability (i.e., p-value) of obtaining a larger value for F

suggests that the observed pattern involving xj and y did
not arise by chance and hence that xj has an effect on the
behavior of y.

The CLs test employs the Kruskal–Wallis test statistic T,
which is based on rank-transformed data and uses the same
classes of xj values as the F-statistic in Eq. (15) Ref. [155,
pp. 229–230]). Specifically,

T ¼
XnI

c¼1

ðR2
c=nIcÞ � nSðnS þ 1Þ2=4

" #,
s2, (16)

where

Rc ¼
X
i2X c

rðyiÞ; s
2 ¼

XnS

i¼1

rðyiÞ
2
� nSðnS þ 1Þ2=4

" #,
ðnS � 1Þ

and r(yi) denotes the rank of yi. If the y values conditional
on each class of xj values have the same distribution, then
the statistic T in Eq. (16) approximately follows a w2

distribution with nI–1 degrees of freedom (Ref. [155,
pp. 230–231]). Thus, the probability probw2 ð

~T4T jnI � 1Þ
of obtaining a value ~T that exceeds T in the presence of
identical y distributions for the individual classes can be
obtained from a w2 distribution with nI–1 degrees of
freedom. A small value for probw2 ð

~T4T jnX � 1Þ (i.e., a
p-value) indicates that the values for y’s conditional on
individual classes have different distributions and thus,
most likely, different means and medians. Hence, a small
p-value indicates that xj has an effect on y.
The CMDs test is based on the w2-test for contingency

tables, which can be used to test for the equality of the
median values of y for the classes into which the values of xj

have been divided (Ref. [155, pp. 143–178]). First, the median
y0.5 for y is estimated for all nS observations. Specifically,

y0:5 ¼
yð0:5nSÞ if 0:5nS is an integer;

½yð½0:5nS�Þ þ yð½0:5nS�þ1Þ�=2 otherwise;

(

(17)

where y(i), i ¼ 1; 2; . . . ; nS, denotes the ordering of the
y-values such that yðiÞpyðiþ1Þ and [�] designates the
greatest integer function. The individual classes of xj values
are then further subdivided on the basis of whether y values
fall above or below y0.5 (Fig. 11a). For class c, let nI1c equal
the number of y values that exceed y0.5, and let nI2c equal
the number of y values that are less than or equal to y0.5.
The result of this partitioning is a 2� nI contingency

table with nIrc observations in each cell (i.e., in cell (r, c),
where r and c designate ‘‘row’’ and ‘‘column,’’ respectively,
in the corresponding contingency table). The following
statistic can now be defined:

T ¼
XnI

c¼1

X2
r¼1

ðnIrc � nErcÞ
2=nErc; (18)

where

nErc ¼
X2
p¼1

nIpc=nS

 ! XnI

q¼1

nIrq=nS

 !
nS

¼
X2
p¼1

nIpc

 ! XnI

q¼1

nIrq

 !,
nS

and corresponds to the expected number of observations in
cell (r, c). If the individual classes of xj values have equal
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medians, then T approximately follows a w2 distribution
with ðnI21Þð221Þ ¼ nI21 degrees of freedom (Ref. [155,
p. 156]). Thus, the probability of obtaining a value ~T that
exceeds T in the presence of equal medians is given by
probw2 ð

~T4T jnI � 1Þ. A small value (i.e., p-value) for
probw2 ð

~T4T jnI � 1Þ indicates that the y’s conditional on
individual classes have different medians and hence that xj

has an influence on y.
The SI test also uses the w2-test to indicate if the pattern

appearing in a scatterplot appears to be nonrandom. The
SI test uses the same partitioning of xj values as used for
the CMNs, CLs and CMDs tests. In addition, the y values
are also partitioned in a manner analogous to that used for
the xj values (Fig. 11b). For notational convenience, let r,
r ¼ 1; 2; . . . ; nD, designate the individual classes into which
the values of y are divided; let Yr designate the set such that
iAYr only if yi belongs to class r; and let nDr equal the
number of elements contained in Yr (i.e., the number of yi’s
associated with class r).

The partitioning of xj and y into nI and nD classes in
turn partitions (xj, y) into nI nD classes (Fig. 11a), where
(xij, yi) belongs to class (r, c) only if xij belongs to class c

of the xj values (i.e., iAXc) and yi belongs to class r of
the y values (i.e., iAYr). For notational convenience,
let Orc denote the set such that xijAOrc only if iAXc (i.e.,
xij is in class c of xj values) and also iAYr (i.e., yi is in
class r of y values), and let nOrc equal the number
of elements contained in Orc. Further, if xj and y are
independent, then

nErc ¼ ðnDr=nSÞðnIc=nSÞnS ¼ nDr nIc=nS (19)

is an estimate of the expected number of observations
(xj, y) that should fall in class (r, c).

The following statistic can be defined:

T ¼
XnI

c¼1

XnD

r¼1

ðnOrc � nErcÞ
2=nErc. (20)

Asymptotically, T follows a w2-distribution with (nI–1)
(nD–1) degrees of freedom when xj and y are independent
(Ref. [155, pp. 158–153]). Thus, probw2 ½

~T4T jðnI �

1ÞðnD� 1Þ� is the probability (i.e., p-value) of obtaining a
value of ~T that exceeds T when xj and y are independent. A
small p-value indicates that the pattern in the scatterplot
arose from some underlying relationship involving xj and y

rather than from chance alone. As shown by comparison of
Eqs. (18) and (20), the CMDs and SI tests differ only in the
partitionings used for the y values.

The four tests described in this section are illustrated in
Table 5 for y ¼WAS_PRES at 10,000 yr under undis-
turbed conditions (Fig. 5a) and disturbed conditions
(Fig. 10a). Scatterplots illustrating the partitioning for
xj ¼ BHPRM and y ¼WAS_PRES under disturbed con-
ditions are given in Fig. 11. For perspective, rankings based
on CCs and RCCs are also presented in Table 4. The
relationships between y ¼WAS_PRES and the dominant
sampled variables under undisturbed conditions are fairly
linear, with the result that all ranking procedures (i.e.,
CMNs, CLs, CMDs, SI, CCs, RCCs) give the same
ordering of variable importance for the top four variables.
In contrast, the relationship between y ¼WAS_PRES and
xj ¼ BHPRM under disturbed conditions is both nonlinear
and nonmonotonic (Fig. 11), with the result that the tests
based on gridding (i.e., CMNs, CLs, CMDs, SI) all identify
BHPRM as being the dominant variable influencing the
uncertainty in WAS_PRES; in contrast, the effect of
BHPRM was completely missed by tests based on CCs and
RCCs. (Table 5).
The CMNs, CLs, CMDs and SI tests discussed in this

section are all based on p-values that derive from statistical
tests predicated on assumptions that are certainly not
satisfied in their entirety in sampling-based sensitivity
analyses. Thus, it is possible that the violation of these
assumptions could be leading to misrankings of variable
importance. Such a possibility can be explored by using a
Monte Carlo procedure to assess if the use of formal
statistical procedures to determine p-values is producing
misleading results (Ref. [156]; Ref. [157, Section 14.5]).
Specifically, nR samples of the form

ðxij ; yiÞ; i ¼ 1; 2; . . . ; nS (21)

can be generated by pairing the nS values for xj randomly
and without replacement with the nS values for y. This
random assignment is repeated nR times to produce nR

samples of the form in Eq. (21) for each uncertain input xj

under consideration. In this example, nR ¼ 10; 000 and
nS ¼ 300. For a given procedure (i.e., CMNs, CLs, CMDs,
SI), each of the nR samples can be used to calculate the
value of the statistic used to determine the corresponding
p-value. The resulting empirical distribution of the statistic
can then be used to estimate the p-value for the statistic
actually observed in the analysis. Comparison of the
p-value obtained for a given set of statistical assumptions
with the p-value obtained from the empirical distribution
of the corresponding statistic provides an indication of the
robustness of the variable rankings with respect to possible
deviations from the assumptions underlying the formal
statistical procedure. As examination of Table 6 shows, the
variable rankings illustrated in this section are quite robust
with respect to possible deviations from the underlying
statistical assumptions on which they are predicated.
Additional Information: Ref. [46, Sections 6.6.8 and

6.6.9]; Refs. [47,158–160].
6.7. Entropy tests for patterns based on gridding

Measures of entropy provide another grid-based proce-
dure to assess the strength of nonlinear relationships
between the xj and y. Specifically, the following quantities
can be defined (Ref. [157, pp. 480–484]):

HðyÞ ¼ �
XnD

r¼1

ðnDr=nSÞ lnðnDr=nSÞ; (22)
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Table 5

Comparison of statistical tests for patterns based on gridding for pressure (WAS_PRES) at 10,000 yr under undistributed (i.e., E0) conditions (Fig. 5a) and

disturbed (i.e., E2) conditions (Fig. 10a) (adapted from Ref. [47, Tables 4 and 21])

Variablea CMNs: 1� 5b CLs: 1� 5c CMDs: 2� 5d SI: 5� 5e CCsf RCCsg

Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000 1 0.0000

HALPOR 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000 2 0.0000

WGRCOR 3 0.0000 3 0.0000 3 0.0025 3 0.0003 3 0.0000 3 0.0000

ANHPRM 4 0.0195 4 0.0187 4 0.0663 4 0.0049 4 0.0241 4 0.0268

ANHBCVGP 18 0.8062 16 0.7686 14 0.6442 5 0.0194 20 0.8084 15 0.7686

Pressure, disturbed (i.e., E2) conditions at 10,00 yr (Fig. 10a)

BHPRM 1 0.0000 1 0.0000 1 0.0000 1 0.0000 10 0.3651 6 0.1704

HALPRM 2 0.0000 2 0.0000 2 0.0000 2 0.0002 1 0.0000 1 0.0000

ANHPRM 3 0.0002 3 0.0000 3 0.0007 4 0.0049 2 0.0000 2 0.0000

ANHBCEXP 4 0.0405 4 0.0602 4 0.0595 14 0.4414 7 0.1786 8 0.2373

HALPOR 5 0.0415 5 0.0940 5 0.0700 11 0.3142 3 0.0090 3 0.0184

WGRCOR 17 0.5428 9 0.2242 14.5 0.5249 3 0.0002 20 0.7676 17 0.6560

aTable includes only variables that had a p-value less than 0.05 for at least one of the procedures although the variable rankings for a specific procedure

are based on the p-values obtained for that procedure for all variables considered in the analysis (see Table 1; variable BHPRM not included in analyses

for undisturbed conditions).
bVariable ranks and p-values for CMNs test with 1� 5 grid; see Eq. (15). Exceptions for CMNs, CLs, CMDs and SI tests: because variables

ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI ¼ 2 and 3 rather than 5 for these two variables.
cVariable ranks and p-values for CLs test with 1� 5 grid; see Eq. (16).
dVariable ranks and p-values for CMDs test with 2� 5 grid; see Eq. (18).
eVariable ranks and p-values for SI test with 5� 5 grid; see Eq. (20).
fVariable ranks and p-values for CC; see Eq. (24), Ref. [47].
gVariable ranks and p-values for RCC; see Eq. (38), Ref. [47].
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HðxjÞ ¼ �
XnI

c¼1

ðnIc=nSÞlnðnIc=nSÞ, (23)

Hðy;xjÞ ¼ �
XnD

r¼1

XnI

c¼1

ðnOrc=nSÞlnðnOrc=nSÞ, (24)

HðxjjyÞ ¼
XnD

r¼1

nDr

nS

� �

� �
XnI

c¼1

½ðnOrc=nSÞ=nDr=nS�

(

�ln½ðnOrc=nSÞ=nDr=nS�

)

¼ �
XnD

r¼1

XnI

c¼1

ðnOrc=nSÞ lnðnOrc=nDrÞ

¼ Hðy;xjÞ �HðyÞ, ð25Þ

HðyjxjÞ ¼
XnI

c¼1

nIc

nS

� �

� �
XnD

r¼1

½ðnOrc=nSÞ=ðnIc=nSÞ�

(

�ln½ðnOrc=nSÞ=ðnIc=nSÞ�

)

¼ �
XnI

c¼1

XnD

r¼1

ðnOrc=nSÞ lnðnOrc=nIcÞ

¼ Hðy;xjÞ �HðxjÞ, ð26Þ

UðxjjyÞ ¼ ½HðxjÞ �HðxjjyÞ�=HðxjÞ

¼ ½HðyÞ þHðxjÞ �Hðy;xjÞ�=HðxjÞ, ð27Þ

UðyjxjÞ ¼ ½HðyÞ �HðyjxjÞ�=HðyÞ

¼ ½HðyÞ þHðxjÞ �Hðy;xjÞ�=HðyÞ, ð28Þ

Uðy; xjÞ ¼ 2½HðyÞ þHðxjÞ �Hðy;xjÞ�=½HðyÞ þHðxjÞ�

¼ ½HðyÞUðyjxjÞ þHðxÞUðxjjyÞ�=½HðyÞ þHðxjÞ�,

ð29Þ

where (i) H(y) and H(xj) are estimates of the entropy
associated with y and xj, respectively, (ii) H(y, xj) is
an estimate of the entropy associated with y and xj,
(iii) H(xjjy) and H(yjxj) are estimates of the expected
entropy of xj conditional on y and the expected entropy of
xj conditional on y, respectively, (iv) U(xjjy) and U(yjxj) are
measures (i.e., uncertainty coefficients) of the contributions
of y to the entropy associated with xj and of xj to the
entropy associated with y, respectively, (v) U(y,x) is an
entropy-based measure of the strength of the association
between xj and y, (vi) the remaining expressions are the
same as defined in Section 6.6, and (vii) the defined
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Table 6

Comparison of variable rankings obtained with formal statistical procedures and Monte Carlo procedures for statistical tests for patterns based on

gridding for pressure (WAS_PRES) at 10,000 yr under undisturbed (i.e., E0) conditions (Adapted from Ref. [47, Table 8]; see Ref. [47, Table 23], for a

similar comparison for pressure at 10,000 yr under disturbed (i.e., E2) conditions)

Variable namea CMN: 1� 5b CMNMC: 1� 5c Variable namea CL: 1� 5b CLMC: 1� 5c

Rank p-Val Rank p-Val Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 2.0 0.0000 WMICDFLG 1.0 0.0000 2.0 0.0000

HALPOR 2.0 0.0000 2.0 0.0000 HALPOR 2.0 0.0000 2.0 0.0000

WGRCOR 3.0 0.0000 2.0 0.0000 WGRCOR 3.0 0.0000 2.0 0.0000

ANHPRM 4.0 0.0195 4.0 0.0214 ANHPRM 4.0 0.0187 4.0 0.0212

SHPRMASP 5.0 0.1439 5.0 0.1495 SHPRMASP 5.0 0.1237 5.0 0.1277

WRBRNSAT 6.0 0.1506 6.0 0.1526 WRBRNSAT 6.0 0.2042 6.0 0.2053

SHRGSSAT 7.0 0.2488 7.0 0.2497 ANRBRSAT 7.0 0.2710 7.0 0.2710

ANRBRSAT 8.0 0.3034 8.0 0.3027 SHRGSSAT 8.0 0.3153 8.0 0.3167

y y y y y y y y y y

WGRMICI 23.0 0.9705 23.0 0.9717 WGRMICI 23.0 0.9649 23.0 0.9663

WGRMICH 24.0 0.9975 24.0 0.9973. WGRMICH 24.0 0.9865 24.0 0.9839

TDCCd 0.970 TDCCd 0.971

Variable namea CMD: 2� 5b CMDMC: 2� 5c Variable namea SI: 5� 5b SIMC: 5� 5c

Rank p-Val Rank p-Val Rank p-Val Rank p-Val

WMICDFLG 1.0 0.0000 1.5 0.0000 WMICDFLG 1.0 0.0000 1.5 0.0000

HALPOR 2.0 0.0000 1.5 0.0000 HALPOR 2.0 0.0000 1.5 0.0000

WGRCOR 3.0 0.0025 3.0 0.0018 WGRCOR 3.0 0.0003 3.0 0.0003

ANHPRM 4.0 0.0663 4.0 0.0690 ANHPRM 4.0 0.0049 4.0 0.0038

SHPRMASP 5.0 0.2427 5.0 0.2401 ANHBCVGP 5.0 0.0194 5.0 0.0178

SHPRMCON 6.0 0.2674 6.0 0.2718 WRGSSAT 6.0 0.1229 6.0 0.1196

ANRBRSAT 7.0 0.3386 7.0 0.3329 SHPRMCON 7.0 0.1487 7.0 0.1529

HALPRM 8.0 0.3883 8.0 0.3967 WASTWICK 8.0 0.1850 8.0 0.1829

y y y y y y y y y y

WGRMICH 23.0 0.9554 23.0 0.9439 WGRMICH 23.0 0.9437 23.0 0.9429

WGRMICI 24.0 0.9702 24.0 0.9664 ANRGSSAT 24.0 0.9763 24.0 0.9791

TDCCd 0.986 TDCCd 0.988

aTwenty-four (24) variables included in analysis; highly correlated variables and variables not relevant to E0 conditions not included.
bVariable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5; see footnote b, Table 5) and analytic determination of p-values.
cVariable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5; see footnote b, Table 5) and Monte Carlo determination of p-values.
dTop down coefficient of concordance (TDCC, see Section 6.12) with variable rankings obtained with a maximum of five classes of x values (i.e., nI ¼ 5;

see footnote b, Table 5) and analytic determination of p-values.
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quantities in Eqs. (22)–(29) are conditional on the grid
structure in use.

The quantities U(yjxj) and U(y, xj) can be used as
sensitivity measures, with U(yjxj) providing a measure of
the effect of the uncertainty in xj on the uncertainty in y

and U(y, xj) providing a measure of the joint behavior of xj

and y. Both quantities equal zero when there is no
relationship between y and xj that is identifiable with the
grid structure in use and equal one when there is a perfect
association between y and xj with the grid structure in use.
Values between zero and one are indicative of intermediate
levels of association. Specifically,

UðyjxjÞ ¼ Uðy;xjÞ ¼ 0 (30)

if

nOrc ¼ nS=ðnDrnIcÞ (31)

for r ¼ 1; 2; . . . ; nD and c ¼ 1; 2; . . . ; nI , and

UðyjxjÞ ¼ Uðy;xjÞ ¼ 1 (32)
if each interval of values for xj is associated with only
one interval of values for y and each interval of values
for y is associated with only one interval of values
for xj. Necessary, but not sufficient, conditions for the
equality in Eq. (31) are (i) nI ¼ nD, and (ii) nIc ¼ nDc,
c ¼ 1; 2; . . . ; nIð¼ nDÞ.
When the nI and nD intervals into which the values for xj

and y are divided contain equal numbers of sampled values
(i.e., nS/nI and nS/nD values for the intervals associated
with xj and y, respectively), then the following simpler
expressions result:

HðxjÞ ¼ lnðnIÞ;HðyÞ ¼ lnðnDÞ; (33)

HðyjxjÞ ¼ Hðy;xjÞ � lnðnIÞ;HðxjyÞ ¼ Hðy; xjÞ � lnðnDÞ;

(34)

UðyjxjÞ ¼ ½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�=lnðnDÞ, (35)

UðxjjyÞ ¼ ½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�= lnðnIÞ, (36)
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Uðy;xjÞ ¼ 2½lnðnIÞ þ lnðnDÞ �Hðy;xjÞ�=½lnðnIÞ þ lnðnDÞ�.

(37)

Further,

UðyjxjÞ ¼ UðxjjyÞ ¼ Uðy; xjÞ ¼ 2�Hðy;xjÞ=lnðnIÞ (38)

if nI ¼ nD.
As shown by comparison of Eqs. (35) and (37), use of

either U(y|xj) or U(y, xj) will produce identical rankings of
variable importance based on the size of H(y, xj) when the
same values for nI and nD and also for nIc ¼ nS=nI and
nDr ¼ nS=nD are used in the determination of U(y|xj) and
U(y, xj) for each of the independent variables under
consideration. Specifically, U(y|xj) and U(y, xj) increase in
size as the entropy H(y, xj) associated with joint distribu-
tion for xj and y decreases. Thus, U(y|xj) and U(y, xj) are
really sensitivity measures that quantify variable impor-
tance on the basis of the entropy H(y, xj) associated with xj

and y. Specifically, the smaller the entropy H(y, xj), the
more important xj is assessed to be in affecting the value of
y. As shown in Eq. (38), U(y|xj) and U(y, xj) have identical
numerical values when nI ¼ nD and nIc ¼ nDr ¼ nS=nD.

A closely related measure of association is given by

Rðy;xjÞ ¼ f1� expð�2½HðxjÞ þHðyÞ �Hðy;xjÞ�Þg
1=2, (39)

which has (i) a value of zero if there is no association
between xj and y in the sense indicated in Eq. (30), (ii) a
value that approaches one as nI and nD increase if there
is perfect association between xj and y in the sense
indicated in conjunction with Eq. (32), and (iii) inter-
mediate values for intermediate levels of association
(Ref. [161]). If xj and y have a bivariate normal
distribution, then R(y, xj) approaches the absolute value
of the correlation coefficient between xj and y as the sample
and grid sizes increase [161].

As suggested by Mishra and Knowlton [162], the SI test
(i.e., a w2-test on the same grid used to define entropy
measures) can be used to identify important variables, and
then the entropy measures U(y, xj), U(y|xj) and R(y, xj) can
be used to provide a numerical representation of variable
importance. The result of this approach is illustrated in
Table 7, with the top two sets of results corresponding to
the use of nI ¼ nD ¼ 5, and the lower two sets correspond-
ing to the use of nI ¼ 10 and nD ¼ 5. As should be the
case, the values for U(y, xj) and U(y|xj) are the same when
nI ¼ nD and are somewhat different when nIanD.
Further, there is little difference in the variable rankings
based on the SI test and on the entropy measures U(y, xj),
U(y|xj) and R(y, xj). Although U(y, xj), U(y|xj) and R(y, xj)
result in the same rankings of variable importance because
of the underlying dependence on H(y, xj), the normal-
ization associated with the definition of R(y, xj) produces
results that are more widely spread over the interval [0,1].
Although not presented, similar normalizations referred to
as Cramer’s V and the contingency coefficient, respectively,
are also possible for the w2statistic T in Eq. (20) associated
with SI test (see Ref. [157, Section 13.6]). The right-most
columns in Table 7 labeled ‘‘KS Test’’ and ‘‘KSMC Test’’
relate to a sensitivity analysis procedure based on a two-
dimensional Kolmogorov–Smirnov (KS) test that will be
discussed in Section 6.10.
The similarity between the ranking of variable impor-

tance with the SI test and with entropy-based measures is
quite striking (Table 8). For all practical purposes, the w2

statistic T defined in Eq. (20) associated with the SI test
and the entropy-based measures U(y, xj), U(y|xj) and R(y,
xj) defined in Eqs. (28), (29) and (39) give the same
rankings of variable importance. However, when discrete
variables such as ANHBCVGP and WMICDFLG are
under consideration, there can be some differences between
rankings based on p-values for the w2 statistic and rankings
based on either the w2 statistic itself or entropy measures
because of the effects of the resultant different degrees of
freedom associated with different variables on the p-values
for the w2 statistic. Clearly, there is a close algebraic
connection between T and the entropy-based measures
U(y, xj), U(y|xj) and R(y, xj). As previously illustrated,
p-values for the w2 statistic provide a way to discern
influential from noninfluential variables for both the SI test
and the entropy-based measures. Although not illustrated,
the Monte Carlo procedure discussed in conjunction with
Eq. (21) and Table 6 for the empirical determination of
p-values could be used to directly determine p-values for
U(y, xj), U(y|xj) and R(y, xj).
Additional information: Ref. [157, pp. 480–484];

Refs. [161–164].

6.8. Nonparametric regression

There are drawbacks to the parametric regression
techniques indicated in Section 6.3 that can reduce their
effectiveness in some sensitivity analyses. First, it is
necessary to provide an a priori specification of the form
of the regression model (e.g., linear as in Eqs. (3) and (12),
nonlinear as in Eq. (13), or linear with rank transformed
data as discussed in Section 6.5). Unfortunately, when
complex patterns of behavior are present, it can be difficult
to determine the appropriate form for a regression model.
Such determinations can be a particular challenge in
exploratory analyses that can involve 10 s or even 100 s of
analysis results, with each result potentially requiring the
specification of a different regression model. Second, the
specified form for the regression is required to hold across
the entire mapping from analysis inputs to analysis results,
which makes the representation of local behavior and/or
asymptotes difficult. In addition, the grid-based procedures
discussed in Sections 6.6 and 6.7 have the drawback that
the associated sensitivity results can be dependent on the
particular grid selected for use. Unfortunately, the most
appropriate grid for use with these procedures is not always
apparent.
Nonparametric regression procedures provide an alter-

native to parametric regression procedures and grid-based
procedures that can mitigate the potential problems
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Table 7

Examples of entropy measures to identify uncertain variables affecting the uncertainty in pressure (WAS_PRES) at 10,000 yr under undisturbed (i.e., E0)

Conditions (Fig. 5a) and Disturbed (i.e., E2) conditions (Fig. 10a)

Variablea SI testb Entropyc Cond. entropyd R-statistice

w2 p-Value Rank U(y, xj) Rank U(y|xj) Rank R(y, xj) Rank

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a): nI ¼ 5, nD ¼ 5

WMICDFLG 198.6 0.0000 1 0.2868 1 0.2361 1 0.7296 1

HALPOR 127.2 0.0000 2 0.1350 2 0.1350 2 0.5930 2

WGRCOR 42.5 0.0003 3 0.0485 3 0.0485 3 0.3800 3

ANHPRM 34.3 0.0049 4 0.0420 4 0.0420 4 0.3560 4

ANHBCVGP 11.7 0.0194 5 0.0172 15.5 0.0123 25 0.1970 25

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a): nI ¼ 5, nD ¼ 5

BHPRM 337.2 0.0000 1 0.3700 1 0.3700 1 0.8340 1

HALPRM 43.7 0.0002 2 0.0526 2 0.0526 2 0.3940 2

WGRCOR 43.7 0.0002 3 0.0456 3 0.0456 3 0.3690 3

ANHPRM 34.3 0.0049 4 0.0405 4 0.0405 4 0.3500 4

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a): nI ¼ 10, nD ¼ 5

WMICDFLG 198.6 0.0000 1 0.1868 1 0.2361 1 0.7296 1

HALPOR 140.2 0.0000 2 0.1240 2 0.1510 2 0.6200 2

WGRCOR 56.3 0.0167 3 0.0515 4. 0.0626 4 0.4270 4

ANHPRM 53.3 0.0314 4 0.0547 3 0.0664 3 0.4390 3

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a); nI ¼ 10, nD ¼ 5

BHPRM 402.3 0.0000 1 0.3490 1 0.4240 1 0.8630 1

WGRCOR 69.0 0.0008 2 0.0616 2 0.0749 2 0.4630 2

HALPRM 63.0 0.0035 3 0.0601 3 0.0731 3 0.4580 3

ANHPRM 63.0 0.0035 4 0.0594 4 0.0722 4 0.4550 4

aTable includes only variables that had a p-value less than 0.05 for SI test.
bw2 value, p-value and variable rank for SI test with 5� 5 grid for nI ¼ 5, nD ¼ 5 and 10� 5 grid for nI ¼ 10, nD ¼ 5; see Eq. (20). Exception: because

variables ANHBCVGP and WMICDFLG are discrete with 2 and 3 values, respectively (see Table 1), nI ¼ 2 and 3 rather than 5 for these two variables.
cEntropy U(y, xj) and variable rank; see Eq. (29).
dConditional entropy and variable rank; see Eq. (28).
eR-statistic (R(y, xj) and variable rank; see Eq. (39).
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indicated in the preceding paragraph. With nonparametric
regression procedures, an a priori specification of the
exact algebraic form of the regression model is not
required. Rather, an iterative procedure is used to
construct a model that captures the relationships that are
present in the mapping between analysis inputs and a
particular analysis result. This iterative construction
procedure does not require the use of a grid and produces
a model that can represent local patterns of behavior.
Nonparametric regression is often referred to as smooth-
ing. Popular nonparametric regression procedures include
(i) locally weighted regression (LOESS), (ii) generalized
additive models (GAMs), (iii) projection pursuit regression
(PP_REG), and (iv) recursive partitioning regression
(RP_REG). These procedures are briefly described below.

The LOESS technique is based on the assumption that
the relationship between y and x is of the form

y ¼ f ðxÞ ¼ aðxÞ þ bðxÞx, (40)

where bðxÞ ¼ ½b1ðxÞ; b2ðxÞ; . . . ;bnX ðxÞ� and x ¼ ½x1;
x2; . . . ; xnX �T. In turn, an approximate relationship of
the form

ŷ ¼ f̂ ðxÞ ¼ âðxÞ þ b̂ðxÞx (41)
is sought with LOESS. The quantities âðxÞ and b̂ðxÞ for a
given value of x are defined to be the values for a and
b ¼ ½b1;b2; . . . ;bnX � that minimize the sum

XnS

i¼1

ðaþ bxi � yiÞ
2 1�

x� xik k

drðxÞ

� �3
" #3

I ½0;drðxÞÞ x� xik kð Þ,

(42)

where (i) dr(x) is the distance to the rth nearest
neighbor (NN) of x in nX-dimensional Eulidean space,
(ii) I[0,dr(x))(Jx–xiJ equals 1 if Jx–xiJodr(x) and equals 0
otherwise, and (iii) the individual independent variables
(i.e., x1, x2, y, xnX) are normalized to mean zero
and standard deviation one so that the value of the
norm J � J is not dominated by the units used for
these variables. The determination of a and b is straight-
forward with the use of appropriate matrix techniques
(Ref. [165, p. 139]).
For GAMs, the function f(x) is assumed to have the

form

f ðxÞ ¼
XnX

j¼1

f jðxjÞ, (43)
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Table 8

Detailed comparison of w2 statistic T and entropy U(y, xj) used to identify uncertain variables affecting the uncertainty in pressure (WAS_PRES) at

10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.e., E2) conditions (Fig. 10a)

Variablea Pressure, undisturbed (i.e., E0) conditions at 10,000 yr

(Fig. 5a): nI ¼ 5, nD ¼ 5

Variablea Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig.

10a): nI ¼ 5, nD ¼ 5

SI test Entropy SI test Entropy

w2 b df c p-Value U(y, xj)
d w2 b df c p�Value U(y, xj)

d

WMICDFLG 198.6 (1.0) 8 0.0000 (1.0) 0.2868 (1.0) BHPRM 337.2 (1.0) 16 0.0000 (1.0) 0.3700 (1.0)

HALPOR 127.0 (2.0) 16 0.0000 (1.0) 0.1350 (2.0) WGRCOR 43.7 (2.0) 16 0.0002 (2.0) 0.0456 (3.0)

WGRCOR 42.5 (3.0) 16 0.0003 (3.0) 0.0485 (3.0) HALPRM 43.7 (3.0) 16 0.0002 (3.0) 0.0526 (2.0)

ANHPRM 34.3 (4.0) 16 0.0049 (4.0) 0.0420 (4.0) ANHPRM 34.3 (4.0) 16 0.0049 (4.0) 0.0405 (4.0)

WRGSSAT 22.7 (5.0) 16 0.1229 (6.0) 0.0230 (5.0) SHRGSSAT 25.0 (5.0) 16 0.0698 (5.0) 0.0268 (5.0)

SHPRMCON 21.8 (6.0) 16 0.1487 (7.0) 0.0228 (6.0) SHBCEXP 23.5 (6.0) 16 0.1010 (6.0) 0.0260 (6.0)

WASTWICK 20.8 (7.0) 16 0.1850 (8.0) 0.0223 (7.0) WGRMICI 20.5 (7.0) 16 0.1985 (7.0) 0.0213 (7.0)

SHBCEXP 19.5 (8.0) 16 0.2436 (9.0) 0.0212 (8.0) WRBRNSAT 19.5 (8.0) 16 0.2436 (9.0) 0.0198 (8.0)

SHPRNHAL 19.3 (9.0) 16 0.2518 (10.0) 0.0200 (10.0) ANRBRSAT 19.3 (9.0) 16 0.2518 (10.0) 0.0197 (9.0)

SHPRMSAP 19.2 (10.0) 16 0.2601 (11.0) 0.0190 (12.0) SHRBRSAT 18.2 (10.5) 16 0.3142 (11.5) 0.0186 (11.0)

SHPRMDRZ 18.2 (11.0) 16 0.3142 (12.0) 0.0204 (9.0) HALPOR 18.2 (10.5) 16 0.3142 (11.5) 0.0190 (10.0)

WGRMICI 18.0 (12.0) 16 0.3239 (13.0) 0.0191 (11.0) WFBETCEL 16.8 (12.0) 16 0.3965 (13.0) 0.0175 (12.0)

ANHBCEXP 17.7 (13.0) 16 0.3438 (14.0) 0.0179 (13.5) ANHBCEXP 16.2 (13.0) 16 0.4414 (14.0) 0.0170 (13.0)

WFBETCEL 17.0 (14.0) 16 0.3856 (15.0) 0.0179 (13.5) WASTWICK 15.2 (14.0) 16 0.5125 (15.0) 0.0164 (14.0)

SHRBRSAT 16.3 (15.0) 16 0.4299 (16.0) 0.0169 (17.0) WGRMICH 14.7 (15.0) 16 0.5492 (16.0) 0.0148 (15.5)

ANRBRSAT 15.7 (16.0) 16 0.4765 (17.0) 0.0172 (15.5) SHPRMDRZ 13.8 (16.0) 16 0.6111 (17.0) 0.0148 (15.5)

HALPRM 13.7 (17.0) 16 0.6235 (18.0) 0.0156 (18.0) SHPRMCLY 13.3 (18.0) 16 0.6482 (19.0) 0.0133 (20.0)

SHRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0141 (19.0) ANRGSSAT 13.3 (18.0) 16 0.6482 (19.0) 0.0137 (19.0)

WRBRNSAT 12.8 (19.0) 16 0.6849 (20.0) 0.0131 (20.0) SHPRMSAP 13.3 (18.0) 16 0.6482 (19.0) 0.0145 (17.5)

SALPRES 11.8 (20.0) 16 0.7554 (21.0) 0.0125 (21.0) SALPRES 12.5 (20.0) 16 0.7089 (21.0) 0.0145 (17.5)

ANHBCVGP 11.7 (21.0) 4 0.0197 (5.0) 0.0172 (15.5) WRGSSAT 10.2 (21.0) 16 0.8578 (22.0) 0.0102 (21.0)

SHPRMCLY 8.7 (22.0) 16 0.9265 (22.0) 0.0093 (22.0) SHPRNHAL 9.2 (22.0) 16 0.9064 (24.0) 0.0099 (22.0)

WGRMICH 8.2 (23.0) 16 0.9437 (23.0) 0.0085 (23.0) SHPRMCON 5.8 (23.0) 16 0.9898 (25.0) 0.0059 (24.0)

ANRGSSAT 6.8 (24.0) 16 0.9763 (24.0) 0.0072 (24.0) ANHBCVGP 5.5 (24.0) 4 0.2427 ( 8.0) 0.0080 (23.0)

WMICDFLG 3.7 (25.0) 8 0.8859 (23.0) 0.0045 (25.0)

p-Value for w2 statistic and variable rank based on p-value for w2 statistic.
aVariables ordered by w2 statistic for SI test.
bw2 statistic for SI test with 5� 5 grid (see footnote b, Tables 5 and 7, and Eq. (20)) and variable rank based on values of w2 statistic.
cDegrees of freedom for w2 statistic.
dEntropy U(y, xj) based on 5� 5 grid (see footnote b, Tables 5 and 7, and Eq. (29)) and variable rank based on U(y, xj).
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where the fj are arbitrary functions that will be determined
as part of the analysis process. In turn, the observed values
for y are assumed to be of the form

yi ¼ f ðxiÞ ¼
XnX

j¼1

f jðxijÞ. (44)

Given initial estimates, f̂ 2; f̂ 3; . . . ; f̂ nX for f2, f3, y, fnX,
an estimate f̂ 1 for f1 can be obtained through use of the
relationship

yi �
XnX

j¼2

f̂ jðxijÞ ffi f 1ðxi1Þ (45)

for i ¼ 1; 2; . . . ; nS. In particular, a scatterplot smoother
(e.g., LOESS with only one independent variable) can be
used to smooth the partial residuals on the left-hand side of
Eq. (45) across x1. This produces an estimate f̂ 1 for f1
defined across the range of values for x1. Given this
estimate for f1, the estimate f̂ 2 for f2 can be refined in the
same manner across the range of values for x2 with
f̂ 1; f̂ 3; f̂ 4; . . . ; f̂ nX . This procedure then continues and
repetitively cycles through the variables. The cycling
continues until convergence is achieved. The result is f̂ j

defined at x1j, x2j, y, xnS,j for j ¼ 1; 2; . . . ; nX . Additional
detail is available elsewhere (Ref. [166, pp. 90–91]; Ref.
[167, pp. 300–302]).
The PP_REG procedure involves both dimension

reduction and additive modeling and is based on the
assumption that f(x) has the form

f ðxÞ ¼
XnD

s¼1

gsðasxÞ, (46)

where as ¼ [a1s, a2s, y, anX,s], x ¼ ½x1;x2; . . . ;xnX �
T, asx

corresponds to a linear combination of the elements of x,
and gs is an arbitrary function. Values for gs, as and nD are
determined as part of the analysis procedure. The expres-
sion in Eq. (46) is an additive model with the quantities
asx replacing the elements xj of x as the independent
variables. Further, this expression involves a reduction in
dimension as nD is usually smaller than nX. The entities
â1; â2; . . . ; ânD and ĝ1, ĝ2, y, ĝnD are estimated as part of
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the construction process. This is accomplished by first
estimating a1 and g1. Specifically, â1 and ĝ1 are defined to
be the values for a and ga that minimize the sum

XnS

i¼1

½yi � gaðaxiÞ�
2, (47)

where aARnX, JaJ ¼ 1, and ga is the outcome of using a
scatterplot smoother (e.g., LOESS) on the points [yi, axi],
i ¼ 1; 2; . . . ; nS. Once â1 and ĝ1 are estimated, the partial
residuals yi � g1ðâ1xiÞ, i ¼ 1; 2; . . . ; nS, are used to obtain
â2 and ĝ2. Specifically, â2 and ĝ2 are defined to be the
values for a and ga that minimize the sum

XnS

i¼1

f½yi � ĝ1ðâ1xiÞ � gaðaxiÞ�g
2, (48)

where a 2 RnX , jjajj ¼ 1, and ga is the outcome of using a
scatterplot smoother on the points [yi–ĝ1(â1 xi), axi],
i ¼ 1; 2; . . . ; nS. This process continues until no appreciable
improvement based on a relative error criterion is
observed.

The RP_REG procedure is based on splitting the data
into subgroups where observations within each subgroup
are more homogeneous than they are over the set of all
observations. Then, f(x) is estimated with regression
models defined for each subgroup. Specifically, f(x) is
estimated by

f̂ ðxÞ ¼
XnP

s¼1

ðâs þ b̂sxÞIsðxÞ, (49)

where (i) As, s ¼ 1; 2; . . . ; nP, designate the subgroups into
which the data are partitioned, (ii) ¼ s þ bsx is the least-
squares approximation to y associated with As, and (iii) Is

is the indicator functions such IsðxÞ ¼ 1 if x is associated
with As and IsðxÞ ¼ 0 otherwise. The subgroups As,
s ¼ 1; 2; . . . ; nP, are developed algorithmically from the
observations [xi, yi], i ¼ 1; 2; . . . ; nS.

The preceding procedures can all be carried out in a
stepwise manner to determine variable importance, with (i)
the most important variable ~x1 being the variable that
results in the single-variable model with the most predictive
capability, (ii) the second-most important variable ~x2 being
the variable that in conjunction with ~x1 results in the two-
variable model with the most predictive capability, and so
on until (iii) some stopping criteria is reached that indicates
that the consideration of additional variables does not
produce models with improved predictive capability. Order
of selection in the stepwise construction process and
fraction of variability explained (i.e., R2 as defined in
Eq. (8)) can be used to indicate variable importance. The
F-statistic with appropriate degrees of freedom (a topic
too complicated for consideration here; see Ref. [168] and
Ref. [169, Section 3.13]) can be used to determine a
stopping point in the stepwise variable selection procedure.

Nonparametric regression procedures are illustrated in
Table 9 for the pressures in Figs. 5a and 10a at 10,000 yr.
For comparison, Table 9 also contains results obtained
with parametric regression procedures, with LIN_REG
indicating linear regression (see Eq. (3)), RANK_REG
indicating rank regression (see Section 6.5), and RS_REG
indicating response surface regression (i.e., the regression
model in Eq. (12) with f jðxjÞ ¼ xj and fjl(xj, xl) ¼ xjxl). For
the result in Fig. 5a (i.e., pressure at 10,000 yr under
undisturbed conditions), the relationship between pressure
and the dominant independent variables is fairly mono-
tonic, with the result that all the regression procedures
perform reasonably well (i.e., R2 values between 0.80 and
0.97 for the first five variables selected in the individual
regressions). As shown in Fig. 6b, there is a strong
nonlinear relationship between the result in Fig. 10a (i.e.,
pressure at 10,000 yr under disturbed conditions) and the
variable BHPRM. The stepwise regressions with the four
nonparametric procedures all identify BHPRM as the most
important variable. In contrast, the linear regressions with
raw and rank-transformed data fail to identify an effect for
BHPRM. For this particular variable, the parametric
response surface regression (i.e., RS_REG in Table 9) also
performs well and results in a regression model with an R2

value of 0.87; however, in many situations the nonpara-
metric regression procedures will outperform response
surface regression.
Additional information: A more detailed discussion of

the use of nonparametric regression in sensitivity is given in
Ref. [168]. General discussions of nonparametric regression
procedures appear in Refs. [165–167,169]. The use of
regression trees [170] in sensitivity analysis is discussed and
illustrated in Ref. [171].
6.9. Squared rank differences/rank correlation coefficient

(SRD/RCC) test

The SRD/RCC test is the result of combining a test for
nonrandomness in the relationship between an independent
and a dependent variable called the SRD test with the
Spearman RCC [172]. This test is effective at identifying
linear and very general nonlinear patterns in analysis
results. However, unlike the regression procedures intro-
duced in Sections 6.3 and 6.8, the SRD/RCC test does not
involve the development of a model that approximates the
relationship between independent and dependent variables.
Further, unlike the grid-based procedures introduced in
Sections 6.6 and 6.7, the SRD/RCC test does not require
the introduction and use of a grid.
A brief description of the SRD/RCC test follows. The

test is used to assess the relationships between individual
elements xj of x ¼ ½x1;x2; . . . ;xnX � and a predicted variable
y of interest for a random or LHS and a functional
relationship of the form y ¼ f ðxÞ. The SRD component of
the test is based on the statistic

Qj ¼
XnS�1

i¼1

ðriþ1;j � rijÞ
2, (50)
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Table 9

Comparison of variable rankings obtained with parametric regression (i.e., LIN_REG, RANK_REG, RS_REG), nonparametric regression (i.e., LOESS,

PP_REG, RP_REG, GAMs), and the squared rank differences/rank correlation (SRD/RCC) test for pressure at (WAS_PRES) 10,000 yr under

undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.e., E2) conditions (Fig. 10a)

Variablea R2b dfc p-Vald Variable R2 df p-Val Variable R2 df p-Val

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

LIN_REG RANK_REG RS_REG

WMICDFLG 0.5076 1.0 0.0000 WMICDFLG 0.5226 1.0 0.0000 WMICDFLG 0.5098 2.0 0.0000

HALPOR 0.7316 1.0 0.0000 HALPOR 0.7320 1.0 0.0000 HALPOR 0.7462 3.0 0.0000

WGRCOR 0.7923 1.0 0.0000 WGRCOR 0.7859 1.0 0.0000 WGRCOR 0.8812 4.0 0.0000

ANHPRM 0.8088 1.0 0.0000 ANHPRM 0.7975 1.0 0.0001 ANHPRM 0.9160 5.0 0.0000

SHRGSSAT 0.8137 1.0 0.0056 SALPRES 0.8027 1.0 0.0058 WASTWICK 0.9304 6.0 0.0000

SALPRES 0.8177 1.0 0.0119 SHRGSSAT 0.8064 1.0 0.0187 SALPRES 0.9383 7.0 0.0000

LOESS PP_REG ANHBCEXP 0.9427 8.0 0.0119

WMICDFLG 0.5098 2.0 0.0000 WMICDFLG 0.5098 2.0 0.0000 RP_REG

HALPOR 0.7662 6.1 0.0000 HALPOR 0.7617 5.4 0.0000 WMICDFLG 0.5076 1.0 0.0000

WGRCOR 0.9186 33.1 0.0000 WGRCOR 0.9236 21.5 0.0000 HALPOR 0.8205 17.0 0.0000

ANHPRM 0.9477 25.1 0.0000 ANHPRM 0.9623 11.3 0.0000 WGRCOR 0.9220 3.0 0.0000

GAM WASTWICK 0.9711 10.1 0.0000 ANHPRM 0.9662 16.0 0.0000

WMICDFLG 0.5098 2.0 0.0000 ANYBCVGP 0.9755 9.1 0.0000 WASTWICK 0.9823 40.0 0.0000

HALPOR 0.7448 4.0 0.0000 WRBRNSAT 0.9813 10.5 0.0000 SRD/RCC TEST

WGRCOR 0.8556 4.0 0.0000 WFBETCEL 0.9851 11.6 0.0000 WMICDFLG NAe 4.0 0.0000

ANHPRM 0.8854 4.0 0.0000 HALPRM 0.9874 9.3 0.0000 HALPOR NA 4.0 0.0000

WASTWICK 0.8921 4.0 0.0019 SALPRES 0.9901 8.2 0.0000 WGRCOR NA 4.0 0.0001

SHRGSSAT 0.9007 10.0 0.0116 SHPRMCLY 0.9929 13.3 0.0000

SALPRES 0.9042 1.0 0.0018 SHRBRSAT 0.9944 9.4 0.0000

SHPRMDRZ 0.9969 10.1 0.0000

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

LIN_REG RANK_REG RS_REG

HALPRM 0.1410 1.0 0.0000 HALPRM 0.1289 1.0 0.0000 BHPRM 0.6098 2.0 0.0000

ANHPRM 0.1999 1.0 0.0000 ANHPRM 0.1866 1.0 0.0000 HALPRM 0.7006 3.0 0.0000

HALPOR 0.2203 1.0 0.0057 HALPOR 0.2049 1.0 0.0094 ANHPRM 0.7902 4.0 0.0000

LOESS PP_REG HALPOR 0.8291 5.0 0.0000

BHPRM 0.6625 8.8 0.0000 BHPRM 0.6646 9.0 0.0000 ANHBCVGP 0.8400 6.0 0.0023

ANHPRM 0.7321 12.8 0.0000 ANHPRM 0.7603 10.7 0.0000 WGRCOR 0.8532 7.0 0.0013

HALPRM 0.7894 10.5 0.0000 HALPRM 0.8440 9.8 0.0000 SHRBRSAT 0.8654 8.0 0.0030

ANHBCVGP 0.8286 28.9 0.0058 HALPOR 0.8965 10.4 0.0000 RP_REG

GAM BHPRM 0.7163 17.0 0.0000

BHPRM 0.6654 10.0 0.0000 HALPRM 0.8474 15.0 0.0000

ANHPRM 0.7555 4.0 0.0000 ANHPRM 0.8894 -9.0 0.0000

HALPRM 0.8242 2.0 0.0000 ANRGSSAT 0.9726 81.0 0.0000

HALPOR 0.8590 2.0 0.0000 SRD/RCC TEST

BHPRM NA 4.0 0.0000

HALPRM NA 4.0 0.0000

ANHPRM NA 4.0 0.0001

SHPRMDRZ NA 4.0 0.0150

aVariables listed in order of selection.
bCumulative R2 value with entry of each variable into model.
cIncremental degrees of freedom with entry of each variable into model for all cases except SRD/RCC test; df fixed at 4.0 for all variables for SRD/RCC

test.
dp-Value for model with addition of each new variable. Stepwise procedure terminates at a p-value of 0.02.
eNA indicates that result is not applicable.
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where rij, i ¼ 1; 2; . . . ; nS, is the rank of y obtained with the
sample element in which xj has rank i. Under the null
hypothesis of no relationship between xj and y, the
quantity

Sj ¼ fQj � ½nSðnS2 � 1Þ=6�g=
ffiffiffiffiffiffiffiffi
nS5

p
=6

n o
(51)
approximately follows a standard normal distribu-
tion for nS440. Thus, a p-value prj indicative of
the strength of the nonlinear relationship between xj

and y can be obtained from Qj. Specifically, prj

is the probability that a value ~Qj4Qj would occur
due to chance if there was no relationship between xj

and y.
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BRAGFLOW (E2 at 1000 yr, R1, R2, R3)

Borehole Permeability (m2): 10x, x = BHPRM
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Fig. 12. Illustration of quadrants used with the two-dimensional KS test

for the variable WAS_PRES at 10,000 yr.
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The RCC component of the test is based on the rank
(i.e., Spearman) correlation coefficient

rcðxj; yÞ ¼

PnS
i¼1½rðxijÞ � ðnS þ 1Þ=2�½rðyiÞ � ðnS þ 1Þ=2�PnS

i¼1½rðxijÞ � ðnS þ 1Þ=2�2
n o1=2 PnS

i¼1½rðyiÞ � ðnS þ 1Þ=2�2
n o1=2

,

(52)

where r(xij) and r(yi) are the ranks associated xj and y for
sample element i. Under the null hypothesis of no rank
correlation between xj and y, the quantity rc(xj, y) has a
known distribution (Ref. [155, Table 10]). Thus, a p-value
pcj indicative of the strength of the monotonic relationship
between xj and y can be obtained from rc(xj, y).

The SRD/RCC test is obtained from combining the
p-values prj and pcj to obtain the statistic

w24 ¼ �2½lnðprf Þ þ lnðpcjÞ�, (53)

which has a w2-square distribution with four degrees of
freedom. The p-value associated with w24 constitutes the
SRD/RCC test for the strength of the relationship between
xj and y.

Results obtained with SRD/RCC test are illustrated in
Table 9. Like the nonparametric regression procedures, the
SRD/RCC test is able to identify the nonlinear effect
associated with BHPRM for the result in Fig. 10a (i.e.,
pressure at 10,000 yr under disturbed conditions), which is
completely missed with the linear regression procedures
with raw and rank-transformed data.

Additional information: A detailed description of the
SRD/RCC test and the determination of the associated p-
value is available in the original article [172].
Table 10

Comparison of formal statistical and Monte Carlo Determination of p-values f

at 10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and disturbed (i.

Variablea SI test: 5� 5b SIMC test: 5� 5c

p-Value Rank p-Value R

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 0.0000 1 0.0000

HALPOR 0.0000 2 0.0000

WGRCOR 0.0003 3 0.0003

ANHPRM 0.0049 4 0.0031

ANHBCVGP 0.0194 5 0.0181

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

BHPRM 0.0000 1 0.0000

HALPRM 0.0002 2 0.0003

WGRCOR 0.0002 3 0.0001

ANHPRM 0.0049 4 0.0039

HALPOR 0.3142 12 0.3164 1

aVariables ordered by p-values for SI test. Table includes only variables tha
bp-Values and variable ranks for SI test with 5� 5 grid (see Footnote b in
cp-Values and variable ranks for SI test with 5� 5 grid (see Footnote b in

associated with Eq. (21).
dp-Values and variable ranks for KS test determined from Eq. (61).
ep-Values and variable ranks for KS test determined with Monte Carlo pro
6.10. Two-dimensional Kolmogorov–Smirnov (KS) test

The two dimensional KS test provides a way to test for a
pattern in a scatterplot without the use of a grid [173–175].
With this test, each point [xij, yi] in the sample [xij, yi],
i ¼ 1; 2; . . . ; nS, is used to divide the xjy plane into four
quadrants (Fig. 12):

Qi1 ¼ fðxj ; yÞ : xijoxj ; yioyg, (54)
or the SI Test and the two dimensional KS test for pressure (WAS_PRES)

e., E2) conditions (Fig. 10a)

KS testd KSMC teste

ank p-Value Rank p-Value Rank

1.5 0.0001 1 0.0000 1.5

1.5 0.0077 2 0.0000 1.5

3 0.2979 3 0.0002 3

4 0.8228 4 0.0257 4

5 1.0000 24 0.4975 16

1 0.0048 1 0.0000 1.5

3 0.1302 2 0.0000 1.5

2 0.9609 5 0.1540 6

4 0.6102 3 0.0023 3

2 0.7830 4 0.0178 4

t had a p-value less than 0.05 for at least one of the procedures.

Tables 5 and 7) determined from w2 distribution; see Eq. (20).

Tables 5 and 7) determined with Monte Carlo procedure; see discussion

cedure; see discussion associated with Eq. (21).
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Qi2 ¼ fðxj ; yÞ : xjoxij ; yioyg, (55)

Qi3 ¼ fðxj ; yÞ : xjoxij ; yoyig, (56)

Qi4 ¼ fðxj ; yÞ : xijoxj ; yoyig. (57)

In turn, two fractions are defined for each quadrant:

fEik ¼ expected fraction of observations in quadrant

Qik if there is no relationship between xj and y, ð58Þ

fOik ¼ observed fraction of observations in quadrant Qik.

(59)

The quantity

D ¼ maxfjfEik � fOikj; k ¼ 1; 2; 3; 4; i ¼ 1; 2; . . . ; nSg

(60)

is the KS statistic for the scatterplot.
The probability probð ~D4DÞ of exceeding D given that

there is no relationship between xj and y can be
approximated by

probð ~D4DÞ

ffi QKS

D
ffiffiffiffiffiffi
nS
p

1þ ½1� cðxj ; yÞ�
1=2 0:25� 0:75

� ffiffiffiffiffiffi
nS
p� �

 !
, ð61Þ

where QKS is the function defined by

QKSðlÞ ¼ 2
X1
j¼1

ð�1Þj�1 expð�2j2l2Þ (62)

and c(xj, y) is the estimated CC between xj and y (Ref. [157,
Section 14.7]). Alternatively, probð ~D4DÞ can be estimated
by a Monte Carlo procedure in which D is repeatedly
estimated with randomly shuffled values (without replace-
ment) of the xij’s and yi’s as previously illustrated in
conjunction with Eq. (21) and Table 6 for the CMNs, CLs,
CMDs and SI tests.

The result of applying the KS test is illustrated in
Table 10, with p-values being calculated as indicated in
Eq. (61) and also calculated with the previously indicated
Monte Carlo procedure. This table also presents the results
of using the SI test with a 5� 5 grid. The direct calculation
of p-values as indicated in Eq. (61) performs rather poorly
and produces p-values that are much larger than those
obtained with the Monte Carlo procedure. In contrast, the
Monte Carlo calculation of p-values for the KS test
produces results that are generally similar to, but not the
same as, the results obtained with the SI test. In particular,
the KS test with Monte Carlo calculation of p-values and
the SI test agree on the most important variables but show
some differences on the less-important variables.

Additional information: Ref. [157]; Refs. [173–175].

6.11. Tests for patterns based on distance measures

Tests for patterns based on distance measures provide
possible alternatives to tests based on gridding as described
in Sections 6.6 and 6.7. Distance-based tests for patterns
have a potential advantage over grid-based tests in that
they do not require the definition and use of a grid that can
possibly influence the outcome of the test. Such tests have a
long history of use in the ecological sciences [176–189].
Three distance-based tests will be illustrated: NN test,

total distance (TD) test, and coefficient of aggregation
(CA) test. Each of these tests involves the consideration of
a set of points of the form [xij, yi], i ¼ 1; 2; . . . ; nS. Further,
the xij’s and yi’s are assumed to be normalized to mean zero
and standard deviation one.
The NN test [190] is based on the statistic

dj ¼
XnS

i¼1

dij=nS, (63)

where dij is the distance from the point (xij, yi) to its NN
among the points (xkj, yk) for k ¼ 1; 2; . . . ; nS and kai. If
xj has an effect on y, then the value for dj should tend
to be smaller than would be the case if xj had no effect
on y. Determination of values ~dj for samples ð ~xij ; ~yiÞ,
i ¼ 1; 2; . . . ; nS, obtained by randomly pairing, without
replacement, the values for the xij’s and yi’s in the original
sample allows the determination of a distribution for dj

under the null hypothesis that there is no relationship
between xj and y. Thus, conditional on the observed
distributions for xj and y, the probability (i.e., a p-value) of
obtaining a smaller value ~dj than the observed value dj by
chance alone can be determined. A small value for this
probability (e.g., o0.01) indicates that xj does indeed have
an effect on y.
The TD test is a variant of the NN test and is based on

the statistic

dtj ¼
XnS

i¼1

XnS

k¼iþ1

dik=nD, (64)

where dik is the distance between the points (xij, yi) and (xkj,
yk) and nD ¼ nSðnS21Þ=2 is the total number of distances
dik. As for the NN statistic dj, the value for dtj will tend to
be smaller than would otherwise be the case if xj has an
effect on y. Similarly to dj, a Monte Carlo procedure can be
used to develop a distribution for dtj under the assumption
that xj has no effect on y. Then, conditional on the
observed distributions for xj and y, the probability of
obtaining a smaller value for dtj by chance alone can be
estimated.
The CA test [179,191] is based on the statistic

Aj ¼
XnS

i¼1

~d
2

ij

, XnS

i¼1

d2
ij þ

XnS

i¼1

~d
2

ij

" #
; (65)

where dij is defined the same as in Eq. (63) for the NN test
and ~dij is defined similarly but for a sample ð ~xij ; ~yiÞ,
i ¼ 1; 2; . . . ; nS, obtained by randomly permuting the
values for the xij’s and yi’s in the sample (xij, yi),
i ¼ 1; 2; . . . ; nS. If xj has an effect on y, then the value for
Aj will tend to be larger than would otherwise be the case
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because of the presence of
P

id
2
ij in the denominator in the

definition of Aj. A Monte Carlo procedure involving
repeated calculations of Aj with two different random
permutations of the xij’s and yi’s in the sample (xij, yi),
i ¼ 1; 2; . . . ; nS, can be used to estimate a distribution for
Aj under the assumption that xj has no effect on y. Then,
conditional on the observed distributions for xj and y, the
probability of obtaining a larger value for Ãj for Aj than
the observed value by chance alone can be estimated.

The SI, NN, TD and CA tests are illustrated in Table 11.
On the whole, the results obtained with the distance-based
tests show considerable disagreement with results obtained
with the SI test and also with other grid-based techniques
illustrated in Table 5. Of the distance-based tests, the TD
test compares best with results obtained with the grid-
based techniques. Thus, this comparison suggests that the
NN, TD and CA tests are less effective sensitivity analysis
procedures than some of the other techniques introduced
in this survey. However, the idea of using a grid-free,
distance-based measure of sensitivity is very appealing. It is
certainly possible that more appropriate distance-based
measures of sensitivity can be found than those used in the
presented tests. This is an area that merits additional
investigation. For example, the use of rank-transformed
data might yield more informative results.

Additional information: Refs. [176–189]; Ref. [192,
Section 8.2.5].
6.12. Top down coefficient of concordance (TDCC)

The TDCC was introduced by Iman and Conover as a
way to test agreement between different sensitivity analysis
Table 11

Comparison of tests for patterns based on distance measures for pressure (WA

disturbed (i.e., E2) conditions (Fig. 10a)

Variablea SI test: 5� 5b NN testc

p-Value Rank p-Value R

Pressure, undisturbed (i.e., E0) conditions at 10,000 yr (Fig. 5a)

WMICDFLG 0.0000 1 0.0001

HALPOR 0.0000 2 0.0000

WGRCOR 0.0003 3 0.0327

ANHPRM 0.0049 4 0.3669 1

ANHBCVGP 0.0194 5 0.4745

Pressure, disturbed (i.e., E2) conditions at 10,000 yr (Fig. 10a)

BHPRM 0.0000 1 0.0000

HALPRM 0.0002 2 0.3511 1

WGRCOR 0.0002 3 0.0095

ANHPRM 0.0049 4 0.0732

HALPOR 0.3142 12 0.2280

aVariables ordered by p-values for SI test. Table includes only variables tha
bp-Values and variable ranks for SI test with 5� 5 grid (see footnote b in T
cp-Values and variable ranks for NN test (see Eq. (63)) determined with M
dSame as c but for TD test (see Eq. (64)).
eSame as c but for CA test (see Eq. (65)).
procedures [193]. However, it also provides a way to
identify significant sets of variables in a sampling-based
sensitivity analysis that does not rely on statistical tests
predicated on distributional assumptions that may not be
satisfied. In this application, the TDCC is used in a
stepwise manner to test for agreement of sensitivity results
obtained when a particular sensitivity analysis procedures
is applied individually to each sample in a sequence
of replicated samples of the same size. The significant
variables are those which the TDCC indicates are identified
as being important across all replicates.
The TDCC is based on the consideration of arrays of the

form

R1 R2 . . . RnR

x1 rðO11Þ rðO12Þ . . . rðO1;nRÞ

x2 rðO21Þ rðO22Þ . . . rðO2;nRÞ

..

. ..
. ..

.
. . . ..

.

xnX rðOnX ;1Þ rðOnX ;2Þ . . . rðOnX ;nRÞ;

(66)

where (i) x1, x2, y, xnX are the variables under
consideration, (ii) R1, R2, y, RnR designate the replicates,
(iii) Ojk is the outcome (i.e., sensitivity measure)
for variable xj and replicate Rk, and (iv) r(Ojk),
j ¼ 1; 2; . . . ; nX , are the ranks assigned to the outcomes
associated with replicate Rk. In the assigning of ranks, (i) a
rank of 1 is assigned to the outcome Ojk with the largest
value for |Ojk|, (ii) a rank of 2 is assigned the outcome Ojk

with the second largest value for |Ojk|, and so on, and (iii)
averaged ranks are assigned to equal values of Ojk. This is
the reverse of the procedure used to assign ranks for use in
rank regression.
S_PRES) at 10,000 yr under undisturbed (i.e., E0) conditions (Fig. 5a) and

TD testd CA teste

ank p-Value Rank p-Value Rank

2 0.0000 2 0.6664 21

1 0.0000 2 0.0014 1

3 0.0000 2 0.0049 2

5 0.6348 21 0.3302 9

7 0.4563 14 0.7544 24

1 0.0000 2 0.0020 2

3 0.0000 2 0.0752 4

2 0.7210 22 0.3420 12

4 0.0000 2 0.0018 1

8 0.0210 4 0.2245 9

t had a p-value less than 0.05 for at least one of the procedures.

ables 5 and 7) determined from w2 distribution; see Eq. (20).

onte Carlo procedures; see discussion associated with Eq. (21).
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The TDCC is a measure of agreement between multiple
rankings that emphasizes agreement between rankings
assigned to important variables and deemphasizes dis-
agreement between rankings assigned to less important/
unimportant variables. For the TDCC, the ranks r(Ojk) in
Eq. (66) are replaced by the corresponding Savage scores
ss(Oij), where

ssðOjkÞ ¼
XnX

j¼rðOjkÞ

1=j (67)

and average Savage scores are assigned in the event of ties.
The result is an array of the form

R1 R2 . . . RnR

x1 ssðO11Þ ssðO12Þ . . . ssðO1;nRÞ

x2 ssðO21Þ ssðO22Þ . . . ssðO2;nRÞ

..

. ..
. ..

.
. . . ..

.

xnX ssðOnX ;1Þ ssðOnX ;2Þ . . . ssðOnX ;nRÞ;

(68)

which has the same form as the array in Eq. (66) except
that the ranks r(Ojk) have been replaced by the correspond-
ing Savage scores ss(Ojk).

The TDCC is defined by

CT ¼
f
PnX

j¼1½
PnR

k¼1ssðOjkÞ�
2 � nR2nX g

fnR2ðnX �
PnX

j¼11=jÞg
(69)

and is equivalent to Kendall’s coefficient of concordance
(Ref. [155, p. 305]) calculated with Savage scores rather
than ranks. Under repeated random assignment of the
integers in the columns of Eq. (66),

T ¼ nRðnX � 1ÞCT (70)

approximately follows a w2-distribution with nX–1 degrees
of freedom and thus provides the basis for a statistical test
of agreement.

The procedure to identify a significant set of variables
with the TDCC operates in the following manner: (i) The
sensitivity analysis technique in use (e.g., stepwise regres-
sion analysis) is applied to each replicate to rank variable
importance. (ii) The TDCC is applied to the variable
rankings obtained with each replicate to determine if there
is a significant agreement between the replicates (e.g., as
defined by a specified p-value for the TDCC). (iii) If there is
significant agreement, the top ranked variable (i.e., rank 1)
for each replicate is removed from consideration for all
replicates; this results in the removal of one variable if all
replicates assign the same variable a rank of 1 and more
than one variable if different variables are assigned a rank
of 1 in different replicates. (iv) A new sensitivity analysis is
then performed for each replicate with the remaining
variables, the remaining variables are reranked for each
replicate, and Steps (ii) and (iii) are repeated with the
reduced set of variables. (v) The process is continued until
the deleted variable result in the analysis reaches a point at
which the TDCC indicates that there is no significant
agreement between the variable rankings obtained with the
individual replicates. (vi) At this point, the analysis ends,
and the significant set of variables are those deleted before
the TDCC indicated no significant agreement between the
variable rankings obtained with the individual replicates.
This procedure is illustrated for rank regression analysis

with the three replicated random samples (i.e., RS1, RS2,
RS3) from the variables in Table 1 for cumulative brine
flow into the repository (BRNREPTC) at 1000 yr. The
individual regression analyses all rank HALPOR as the
most important variable (Table 12) and have a TDCC of
0.80 with a p-value of 5.2E-5 (Table 13). As a result,
HALPOR is removed from consideration, which reduces
the number of independent variables from 29 to 28. A new
rank regression is then performed for each replicate with
the remaining 28 variables, and the variables are reranked
(i.e., from 1 to 28) on the basis of their SRRCs, with
ANHPRM having a rank of 1 in one replicate and
WMICDFLG having a rank of 1 in two replicates. For
this new ranking (i.e., without HALPOR), the TDCC has a
value of 0.71 with a p-value of 5.0E-4 (Table 13). As this is
considered to be significant agreement, ANHPRM and
WMICDFLG are dropped; the remaining 26 variables are
reranked; new regressions are performed for each replicate;
and a resultant TDCC of 0.46 with a p-value of 9.8E-2 is
calculated (Table 13). If a p-value of 9.8E-2 is considered to
be insignificant, then the analysis ends, and the set of
significant variables is taken to be {HALPOR, ANHPRM,
WMICDFLG}.
If a p-value of 9.8E-2 is considered to be significant (e.g.,

if the analysis was using 0.1 as the p-value above which the
analysis stopped), then the analysis would continue with
the top ranked variables in the individual replicates being
dropped (i.e., SALPRES, HALPRM, BPPRM) and the
TDCC recalculated for the remaining 23 variables. This
process would continue until either an insignificant value
for the TDCC was obtained or all variables were dropped,
with the latter being an unlikely outcome.
Additional information: Refs. [138,193]. Content of this

section is an adaptation of material contained in of Ref.
[138, Sections 5 and 6].

6.13. Variance decomposition

An informative, but potentially computationally expen-
sive, sensitivity analysis procedure is based on a complete
variance decomposition of the uncertainty associated with
y [56–59] With this procedure, the variance V(y) of y is
expressed as

V ðyÞ ¼
XnX

j¼1

Vj þ
XnX

j¼1

XnX

k¼jþ1

Vjk þ � � � þ V12;...;nX , (71)

where Vj is the contribution of xj to V(y), Vjk is the
contribution of the interaction of xj and xk to V(y), and so
on up to V12,y,nX, which is the contribution of the
interaction of x1, x2, y, xnX to V(y). Sensitivity measures
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Table 13

Sensitivity analysis with the TDCC for three replicated random samples of

size 100 for cumulative brine flow into repository (BRNREPTC) at 1000 yr

under undisturbed (i.e., E0) conditions (adapted from Ref. [138, Table 9])

Stepa TDCCb p-Valuec Variable(s) removedd

1 0.80 5.2E-05 HALPOR

2 0.71 5.0E-04 WMICDFLG, ANHPRM

3 0.46 9.8E-02 SALPRES, HALPRM, BPPRM

aSteps in analysis.
bTDCC at beginning of step.
cp-Value for TDCC at beginning of step.
dVariable(s) removed at end of step.

Table 12

Sensitivity analysis results based on SRRCs for three replicated random

samples (RS1 RS2, RS3) of size 100 for cumulative brine flow into

repository (BRNREPTC) at 1000 yr under undisturbed (i.e., E0) condi-

tions (adapted from Ref. [138, Table 8])

Variablea RS1b RS2 RS3

HALPOR 9.93E�01(1)c 9.67E�01(1) 9.73E�01(1)

WMICDFLG �9.72E-02(2) �6.92E�02(4) �1.13E�01(2)

ANHPRM 6.49E-02(3) 1.33E�01(2) 9.84E�02(3)

SALPRES �4.00E�02(4) �2.70E�03(26) �1.41E�02(13)

HALPRM 3.53E�02(5) 7.67E�02(3) 4.05E�02(5)

WRBRNSAT �3.08E�02(6) �1.79E�02(14) 9.13E�03(17)

WASTWICK �2.82E�02(7) �2.27E�02(10) �4.47E�03(21)

BPCOMP �2.61E�02(8) 2.36E�02(9) �8.05E�04(29)

SHPRMDRZ 2.29E�02(9) �1.37E�02(17) 2.58E�02(8)

BPPRM �1.85E�02(10) 1.27E�02(19) 5.08E�02(4)

y y y y

BPVOL �1.58E�03(27) 6.54E�03(23) 4.64E�03(20)

ANHBCEXP �1.30E�03(28) 4.32E�03(25) 2.88E�02(6)

WRGSSAT �1.19E�03(29) 1.32E�02(18) �5.33E�03(19)

aVariables in regression model ordered by SRRCs for sample RS1.
bSRRC in model containing all variables for indicated sample.
cVariable rank based on absolute value of SRRC for indicated sample.
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are provided by

sj ¼ V j=V ðyÞ and sjT ¼

V j þ
PnX

k¼1
kaj

V jk þ � � � þ V12;...;nX

V ðvÞ
,

(72)

where sj is the fraction of V(y) contributed by xj alone and
sjT is the fraction of V(y) contributed xj and interactions of
xj with other variables.

The contributions to variance Vj, Vjk, y, V12,y,nX in
Eqs. (71) and (72) are defined by multidimensional
integrals involving y ¼ f ðxÞ and the individual elements xj

of x. Specifically,

EðyÞ ¼

Z
X

f ðxÞ
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj , (73)
V ðyÞ ¼

Z
X

½f ðxÞ � EðyÞ�2
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj

¼

Z
X

f 2
ðxÞ
YnX

j¼1

djðxjÞ
YnX

j¼1

dxj � E2ðyÞ, ð74Þ

Vj ¼

Z
Xj

Z
X�j

f ðxÞ
YnX

k¼1
kaj

dkðxkÞ
YnX

k¼1
kaj

dkxk

2
64

3
75
2

�djðxjÞdxj � E2ðyÞ, ð75Þ

Vjk ¼

Z
Xj

Z
Xk

Z
X�j;k

f xð Þ
YnX

l¼1
laj;k

dl xlð Þ
YnX

l¼1
laj;k

dxl

2
64

3
75
2

� djðxjÞdkðxkÞdxjdxk � E2ðyÞ � V j � Vk ð76Þ

and

Vj þ
XnX

k¼1
kaj

V jk þ � � � þ V 12;...;nX

¼ V ðf Þ �

Z
X�j

Z
Xj

Z
~X j

f ðxÞ f ð ~xÞdjð ~xjÞdjðxjÞ
YnX

k¼1
kaj

dkðxkÞ

2
64

3
75

8><
>:

� d ~xjdxj

YnX

k¼1
kaj

dxk � E2ðyÞ

9>=
>;, ð77Þ

where (i) Xj is the sample space for xj, dj(xj) is the density
function for xj and the resultant quantities

X ¼
YnX

j¼1

X j and dðxÞ ¼
YnX

j¼1

djðxjÞ

are the sample space and density function, respectively, for
x, (ii) X�j and X�j,k correspond to the reduced sample
spaces defined by

X�j ¼
YnX

k¼1
kaj

X k and X�j;k ¼
YnX

l¼1
laj;k

X l

and (iii) Xj ¼ X̃j in Eq. (77) with the value for ~xj 2 ~X j

replacing the value for xjAXj in the vector ~x (i.e., the
variables xj and ~xj associated with Xj and X̃j have identical
distributions but are assumed to be independent and the
vectors x and ~x are the same except that xj appears as
element j in x and ~xj appears as element j in ~x).
As a result, the determination of sj and sjT is a problem in

the evaluation of multidimensional integrals. In practice,
this evaluation is carried out with sampling-based methods
of the form indicated in the following algorithm.

Step 1: Generate a random or LHS

xi ¼ ½xi1; xi2; . . . ; xi;nX �; i ¼ 1; 2; . . . ; nS (78)
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from x ¼ ½x1; x2; . . . ;xnX � in consistency with the distribu-
tions assigned to the individual xj.

Step 2: Estimate the mean and variance for y with the
approximations

ÊðyÞ ¼
XnS

i¼1

f ðxiÞ=nS (79)

and

V̂ ðyÞ ¼
XnS

i¼1

½f ðxiÞ � ÊðyÞ�2=nS ¼
XnS

i¼1

f 2
ðxiÞ=nS � Ê

2
ðyÞ.

(80)

The estimation of Ê(y) and V̂ ðyÞ requires nS evaluations
of the function f.

Step 3: Generate a second random or LHS

ri ¼ ½ri1; ri2; . . . ; ri;nX �; i ¼ 1; 2; . . . ; nS (81)

by randomly permuting, without replacement, the indivi-
dual variable values associated with the sample generated
in Step 1.

Step 4: For each variable xj, generate a reordering

rij ¼ ½rij1; rij2; . . . ; rij;nX �; i ¼ 1; 2; . . . ; nS (82)

of the sample generated in Step 3 such that rijj ¼ xij. This
step only involves a change in the numbering associated
with the sample generated in Step 3 for each xj; no changes
to the sample itself are involved.

Step 5: For each variable xj, estimate sj by

sj ffi
XnS

i¼1

f ðxiÞf ðrijÞ=nS � Ê
2
ðyÞ

" #,
V̂ ðyÞ. (83)

The estimation of sj for all xj requires only nS additional
evaluations of the function f as a result of the efficient reuse
of the function evaluations for the sample generated in
Step 3.

Step 6: For each variable xj, generate an additional
sample

xij ¼ ½xij1; xij2; . . . ; xij;nX �; i ¼ 1; 2; . . . ; nS, (84)

where xijj is generated as a random or LHS from xj and
xijk ¼ xik for kaj. The sample generated for xj in this step
differs from the sample generated in Step 1 only in the
values associated with xj.

Step 7: Estimate sjT by

sjT ffi
XnS

i¼1

f ðxiÞ½f ðxiÞ � f ðxijÞ�=½nSV̂ ðyÞ� (85)

for each xj. The estimation of sjT for all xj requires an
additional (nX)(nS) evaluations of the function f.

Although the sensitivity measures sj and sjT provide
valuable sensitivity information, their determination can be
computationally expensive due to the large number of
function evaluations that could be required. Specifically,
2(nS), ðnX þ 1ÞðnSÞ and ðnX þ 2ÞðnSÞ function evaluations
are required to estimate sj, sjT and both sj and sjT,
respectively, for nX uncertain variables. Further, because
integrals are being approximated, the basic sample size nS

required for the preceding algorithm to produce acceptable
approximations to sj and sjT is likely to be larger than the
sample sizes required for other sampling-based sensitivity
measures.
Sensitivity analysis based on variance decomposition is

illustrated with a simple test function introduced as part of
a review of uncertainty and sensitivity analysis procedures
(Ref. [194, Model 9]). Specifically, this test function is
defined by

y ¼ f ðxÞ;x ¼ ½x1; x2; x3�

¼ sin x1 þ A sin2x2 þ Bx4
3 sinx1 ð86Þ

with A ¼ 7, B ¼ 0:1 and each xj uniform on [�p,p].
Unfortunately, the fluid flow model that has been used to
illustrate other sensitivity analysis procedures is too
computationally demanding for use with the procedures
discussed in this section. Values of sj and sjT obtained with
a base sample size of nS ¼ 10; 000 are

S1 ¼ 0:30; s2 ¼ 0:46; s3 ¼ 0:00 (87)

and

s1 T ¼ 0:53; s2 T ¼ 0:45; s3 T ¼ 0:23. (88)

Further, results obtained with different values for nS are
illustrated in Table 14 and suggest that the approximations
of the integrals appearing in the definitions of sj and sjT are
close to being converged with nS ¼ 10; 000.
For perspective, sensitivity results based on CCs, RCCs,

CMNs, CLs, CMDs and SI are presented in Table 15 and
scatterplots for x1, x2 and x3 are given in Fig. 13. The
model in Eq. (86) was constructed to have patterns that
would be difficult to identify with regression-based
sensitivity analysis procedures. Thus, although x2 is a
major contributor to the uncertainty in y, this effect is
completely missed by the analyses based on CCs and RCCs
in Table 15 owing to the oscillatory relationship between
x2 and y (Fig. 13b). Similarly, the CMDs test does
not identify x3 as having an effect on y owing to the
constancy of the median values for y across the range of x3

(Fig. 13c). Of the tests presented in Table 15, the SI test has
the best performance and gives a reasonable indication
of the importance of x1, x2 and x3 with respect to the
uncertainty in y for nS ¼ 100 and 1000. This is not
surprising as the SI test is effective at identifying nonlinear
relationships. Fullest representation of the effects of x1, x2

and x3 on uncertainty in y is given by the variance
decomposition results in Eqs. (87) and (88). However,
this enhanced resolution comes at a cost as the results in
Eqs. (87) and (88) required more function evaluations (i.e.,
nS ¼ 10; 000) than the SI results (i.e., nS ¼ 100 and
nS ¼ 1000) in Table 15.
Additional Information: Refs. [56–60,195–210].
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Table 15

Sensitivity results based on CCs, RCCs, CMNs, CLs, CMDs and SI for model in Eq. (86) (Ref. [101, Table 9.14])

Variable namea CCb RCCc CMN: 1� 5d CL: 1� 5e CMD: 2� 5f SI: 5� 5g

Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val Rank p-Val

Sample size nLHS ¼ 100

x1 1.0 0.0000 1.0 0.0000 1.0 0.0000 1.0 0.0000 2.0 0.0001 1.0 0.0000

x3 2.0 0.5667 2.0 0.6361 3.0 0.6917 3.0 0.5495 3.0 0.9384 3.0 0.0615

x2 3.0 0.8327 3.0 0.8393 2.0 0.0000 2.0 0.0000 1.0 0.0000 2.0 0.0008

Sample size nLHS ¼ 1000

x1 1.0 0.0000 1.0 0.0000 1.5 0.0000 1.5 0.0000 2.0 0.0000 1.5 0.0000

x3 2.0 0.0162 2.0 0.0187 3.0 0.0438 3.0 0.0347 3.0 0.1446 3.0 0.0000

x2 3.0 0.9799 3.0 0.9999 1.5 0.0000 1.5 0.0000 1.0 0.0000 1.5 0.0000

aVariables ordered by p-values for CCs.
bRanks and p-values for CCs; see Eq. (24), Ref. [47].
cRanks and p-values for RCCs; see Eq. (38), Ref. [47].
dRanks and p-values for CMNs test with 1� 5 grid; see Eq. (15).
eRanks and p-values for CLs test with 1� 5 grid; see Eq. (16)
fRanks and p-values for CMDs test with 2� 5 grid; see Eq. (18).
gRanks and p-values for SI test with 5� 5 grid; see Eq. (20).

Table 14

Evaluation of variance decompositions sj and sjT for model in Eq. (86) with different sample sizes

nSa
ÊðyÞb V̂ ðyÞc ŝ1

d ŝ2
d ŝ3

d ŝ1T
e ŝ2T

e ŝ3T
e

10 3.7 16.5 0.70 0.65 �0.04 0.84 �0.09 �0.24

100 3.9 13.1 0.10 0.37 �0.24 0.79 0.80 0.45

1000 3.5 14.2 0.30 0.44 �0.02 0.56 0.53 0.24

10,000 3.5 14.0 0.30 0.46 0.00 0.53 0.45 0.23

100,000 3.5 13.9 0.32 0.44 �0.00 0.56 0.44 0.24

1,000,000 3.5 13.8 0.32 0.44 0.00 0.56 0.44 0.24

aSample size.
bEstimate for expected value of y; see Eqs. (74) and (79).
cEstimate for variance of y; see Eqs. (74) and (80).
dEstimate for contribution of xj, j ¼ 1, 2, 3, to variance of y; see Eqs. (72) and (83).
eEstimate for contribution of xj, j ¼ 1, 2, 3, and its interactions with the other two variables to the variance of y; see Eqs. (72) and (85).
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7. Summary

Sampling-based uncertainty and sensitivity analysis is
widely used, and as a result, is a fairly mature area of study.
However, there remain a number of important challenges
and areas for additional study. For example, there is a need
for sensitivity analysis procedures that are more effective at
revealing nonlinear relations than the parametric regres-
sion procedures (Section 6.3) and partial correlation
procedures (Section 6.4) currently in wide use. Among
the approaches to sensitivity analysis described in the
preceding section, statistical tests for patterns based on
gridding (Section 6.6), nonparametric regression (Section
6.8), the SRD/rank correlation test (Section 6.9), the two
dimensional KS test (Section 6.10), and complete variance
decomposition (Section 6.13) have not been as widely used
as approaches based on parametric regression and partial
correlation and merit additional investigation and use. As
another example, sampling-based procedures for uncer-
tainty and sensitivity analysis usually use probability as the
model, or representation, for uncertainty. However, when
limited information is available with which to characterize
uncertainty, probabilistic characterizations can give the
appearance of more knowledge than is really present.
Alternative representations for uncertainty such as evi-
dence theory and possibility theory merit consideration for
their potential to represent uncertainty in situations where
little information is available [84–92]. Finally, a significant
challenge is the education of potential users of uncertainty
and sensitivity analysis about (i) the importance of such
analyses and their role in both large and small analyses,
(ii) the need for appropriate separation of aleatory and
epistemic uncertainty in the conceptual and computational
implementation of analyses of complex systems [15–24],
(iii) the need for a clear conceptual view of what an analysis
is intended to represent and a computational design that is
consistent with that view [15,124,211,212], (iv) the role that
uncertainty and sensitivity analysis plays in model and
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Nonmonotonic Test Problem : nLHS = 1000
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Fig. 13. Scatterplots for model in Eq. (86) with grid for SI test with nI ¼ nD ¼ 5 (adapted from Ref. [101, Fig. 9.15]).
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analysis verification [5,6], and (v) the importance of
avoiding deliberately conservative assumptions if mean-
ingful uncertainty and sensitivity analysis results are to be
obtained [213–217].
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