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Abstract— Traffic matrices are extremely useful for net-
work configuration, management, engineering, and pricing.
Direct measurement is, however, expensive in general and
impossible in some cases. This paper proposes a scalable
algorithm for statistically estimating a traffic matrix from
the readily available link counts. It relies on a divide-and-
conquer strategy to lower the computational cost without
losing estimation accuracy. The proposed algorithm is tested
on a real network with 18 nodes. The estimates are compa-
rable to the direct estimates but require dramatically less
computation.

Keywords—divide-and-conquer, MLE, link counts, scala-
bility, statistical estimation, traffic matrix

I. INTRODUCTION

A traffic matrix measures the volume of traffic that a
communications network carries between its source and
destination nodes. Nodes may represent ingress and egress
points of a backbone transit network, access or border
routers at the edge of an ISP’s regional POP, or subnets
of an enterprise network. Traffic matrices are key to many
network design, engineering, and management functions
but they are often difficult to measure directly. Because
networks are dynamic, analysis tools must be adaptive and
computationally light weight.

Estimating a traffic matrix from aggregated traffic da-
ta such as link byte counts is an inverse problem that re-
sembles tomography in medical imaging, so it was named
network tomography by Vardi [1]. (This term has recent-
ly gained a broader interpretation and now includes many
other inference problems on networks [2].) Cao, Davis,
Vander Wiel, and Yu [3] develop a time-varying statisti-
cal model to estimate an evolving traffic matrix over time
using link counts at router interfaces.

Their model is validated using data collected on a Lu-
cent Technologies research network having only eight sig-
nificant edge nodes. Their method does not scale to large
networks, however. This paper proposes a computationally
scalable divide-and-conquer methodology that allows traf-
fic matrices to be estimated for networks with many more
edge nodes. The main ideas of the paper can be understood
by reading Sections II, I1l, VI, and VII and skimming in-
troductory matter in the remaining sections. To facilitate
reading, a partial list of notation appears in the Appendix.

Il. STATISTICAL NETWORK TOMOGRAPHY

Computer networks consist of links connecting inter-
faces between routing devices. Figure 1 shows a network
at Lucent Technologies that is analyzed in Section VI. The
edge links in this example represent router interfaces in a
local area network (LAN). If the figure represented an IS-
P with five local regions (the routers, R1-4, G) and a core
transit network (the switch, S), the edge links would repre-
sent access points in the regional networks. The network
has 18 edge nodes, 324 = 182 origin-destination (OD)
pairs, and 46 unidirectional links.
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Fig. 1. A network at Lucent Technologies. Total edge nodes at
each intermediate node are listed.

Cao et al. [3] represented link count measurements as
summations of various OD counts that were modeled as
independent random variables. Time-varying traffic ma-
trices estimated from a sequence of link counts were val-
idated on a small subnetwork of Figure 1 by comparing
the estimates with actual OD counts that were collected
by running NetFlow [4] software on the routers. Such di-
rect point-to-point measurements are often not available
because they require additional router CPU resources, can
reduce packet forwarding efficiency, and involve a signifi-
cant administrative burden when used on a large scale. Es-
timated traffic matrices matched the measured ones well,
especially for moderate or large counts. Thus, for some
purposes such as planning and provisioning activities es-
timates of OD traffic could be used as inexpensive substi-
tutes for direct measurements.

Lety = (y1,.-.,ys)" denote the observed column vec-
tor of incoming and outgoing byte counts measured on
each router link interface during a given time interval and
let x = (z1,...,zs)" denote the unobserved vector of cor-
responding byte counts for all OD pairs in the network.
Here ’ indicates transpose and x is the ‘traffic matrix’ even
though it is arranged as a column vector for convenience.



One element of x, for example, corresponds to the num-
ber of bytes originating from a specified origin node to a
specified destination node, whereas one element of y cor-
responds to bytes originating from the origin node regard-
less of their destination. Thus each element of y is a sum
of selected elements of x, so

y = Ax 1)

where A is a J x I routing matrix of 0’s and 1’s that is
determined by the routing scheme of the network. In this
paper, we only consider fixed routing, i.e. there is only one
route from an origin to a destination.
As in [3] the unobserved OD byte counts are modeled
as
x; ~ normal();, ¢2;), independently 2

and this implies

y ~ normal(AX, AZA’), ®3)
where

A= ()‘17' e 1AI)I7 and

> = ¢diag(i,..., ). (4)

Here A > 0 s the vector of OD mean rates, and ¢ > 0
is a scale parameter that relates the variance of the counts
to their mean, since usually larger counts have larger vari-
ance. A more general power model relating the mean and
variance is ¥ = ¢ diag(A\1¢, ..., ), where c is a con-
stant. Cao et al. [3] show that ¢ = 2 fits the data for two d-
ifferent subnetworks of Figure 1 slightly better than ¢ = 1.
But only ¢ = 1 provides a conceptually consistent rep-
resentation in the sense that the individual and aggregated
OD traffic have the same mean-variance relationship. This
consistency is important to our approach of solving large
network problems because we break the problem for the
entire network into several subproblems that involve only
a small subnetwork where many ODs are aggregated into
a single entity. In this paper, ¢ = 1 is assumed.

A sequence of N sets of link measurements y,...,yy
is assumed to be independent and identically distributed.
Under model (3), the log-likelihood of the combined pa-
rameter @ = (X, ¢) is

N
10|y, yn) = —Elog|AZA'|
1
5>y~ AN(ATA) Ly, — AN). ()
t=1

Cao et al. [3] apply an expectation—-maximization (EM,
[5]) algorithm to produce an initial estimate of the maxi-
mum likelihood estimator (MLE) for @, and then apply a
second-order optimization method (as in [6]) to obtain the
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final MLE @ = (X, ¢). Using equations (2-4), the point-
to-point traffic for OD pair ¢ at time ¢ can be estimated by
the conditional expectation

i’z’,t = E[aci,t|9, y = Ax, Tit > 0] (6)

An iterative proportional fitting (IPF) algorithm ([7],[8]) is
then applied to %; = (X14,...,%r,)' to guarantee %; > 0
and the constraints y, = Ax; are met. Cao et al. [3] also
showed how the estimates can be improved by smoothing
over successive blocks of time.

The method in [3] uses all available information to esti-
mate rate parameters but it does not scale to networks with
many nodes. In general, if there are N, edge nodes, the
number of floating point operations needed to compute the
MLE is at least proportional to N2.

I11. DIVIDE-AND-CONQUER OVERVIEW

Traffic matrix estimation for a large network can be con-
quered by dividing the problem into a number of smaller
subproblems. The computational complexity of each sub-
problem can be made independent of the size of the com-
plete network. This scalable method has three major step-
S.

1. Partition all OD pairs into a number of disjoint sets

S1,59,--.,5Mm.

2. Foreach OD set S, select a corresponding set of link
measurements to use for estimation. These link sets
are not usually disjoint.

3. Estimate rate parameters for the ODs in S by using a
reduced version of the traffic model that aggregates
the large number of remaining rates into the fewest
possible parameters.

The simplest version of this method is to treat each OD
pair separately and estimate the mean for an OD pair using
only measurements from the origin link and the destination
link. This simple case illustrates the basic ideas in the gen-
eral approach that are discussed in the sections that follow.

Suppose the mean traffic from origin o to destination d
is to be estimated from link measurements y[o] and y[d]
representing the byte counts originating from node o and
destined to node d respectively. Obviously the only traf-
fic included in both link measurements is y[od], the target
traffic from o to d. All other traffic originating from o is
destined elsewhere and is denoted y[od]. All other traf-
fic destined to d originates elsewhere and is denoted y[od).
These last three quantities are probabilistically indepen-
dent because they are aggregates of disjoint pieces of the
full OD traffic vector x. These relationships are compactly
written as

lod]
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where the components of the right-hand-side vector are
independent with variances proportional to their mean-
s. Equation 7 has the same form as the original mod-
el y = Ax but is much smaller and focuses on a single
OD pair. Estimates of the three rate parameters in this re-
duced model are easy to compute and the first parameter,
Aod] = Eylod], is the one that we aim to estimate. The
full vector X can be estimated by solving one such prob-
lem for each OD pair. The biggest drawback of estimating
each OD rate in this way is that too much relevant informa-
tion is ignored. Sections that follow describe how to divide
and conquer using somewhat larger subproblems and more
link measurements.

Equation (7) has four properties that are important to
preserve in developing a more for the general divide-and-
conquer approach.

1. The linear system is small.

2. The right-side vector has independent elements, one

of which is the target OD traffic.

3. The right-side matrix has only 0-1 elements.

4. A sample of left-side link measurements is sufficient

to estimate the target rate parameter.

Independence and a 0-1 matrix keep the optimization
problem uncomplicated because the constraints on the esti-
mates are simple: each parameter has to be positive. If the
right-side aggregates were not disjoint, they would be sta-
tistically dependent and their parameters would have gen-
eral linear constraints that would be inherited from the pos-
itivity constraints on A. The property, termed estimability,
ensures that A[od] can be estimated from the data. This can
be established by noting that

¢Alod] = Var(ylod)) = Cov(ylo], y[d]), and
¢ = Var(y[o])/E(y[o]).

Thus, the moments of y[o], and y[d] completely determine

Alod].

All three rate parameters can be estimated from the se-
lected link measurements. This is not necessarily true for
general partitions. The target parameters, however, are al-
ways estimable if their origin and destination links are in-
cluded in the measurement set.

Some additional notation is needed for general partition-
s (also see the Appendix.)

An OD pair is written i = (o, d) and an upper-case let-
ter, such as S, denotes a set of OD pairs. A bold upper-
case denotes an ordered collection of OD subsets, as in
S = {S1,-...,Sm}. The complement of S is S, and inter-
sections are denoted either S1S5 or S; N Ss.

Associated with each physical link [ is the set L of OD
pairs that utilize the link. For ease of exposition, both enti-
ties are referred to as the link. A bold L denotes an ordered
collection of linksas in L = {Ly,..., Ly }.

The total traffic count (at a given time) for any OD sub-

set S'is
y[S] =Y i
i€s
with corresponding mean A[S]. In general, y[.S] is not ob-
servable unless S represents a link. Column vectors of
these aggregates are written as

y8l = @[S, ylSm])’
and the same convention is used for A[S].

IV. FORMING SUBPROBLEMS

At the heart of the divide-and-conquer methodology is a
partition of the OD pairs into disjoint groups and selection
of link sets from which to estimate each group’s rate pa-
rameters. This section gives heuristic approaches to form-
ing these subproblems. OD pairs are partitioned using dis-
tance scores and a clustering algorithm. Then links are se-
lected for each cluster to balance information loss against
computational cost. Often, the resulting subproblems are
associated with natural subnetworks.

A. Grouping OD pairs

Routing topology usually comes into play when decid-
ing how to group OD pairs. For example, hierarchical-
ly routed networks have various domains of edge-nodes.
Traffic with origin and destination in the same domain s-
tays within that domain, and traffic from one domain to
another domain goes through a single set of intermediate
gateways.

In general it is intuitive to group the OD pairs as fol-
lows.

1. Split all edge nodes into a number of domains.

2. Place all OD pairs into the same group that are o-
riginating from and destined to the same pair of do-
mains.

Figure 2 shows the topology for a two router network.
Routers R1, R2 each have two edge nodes and are inter-
connected by an intermediate link. In this case, the four
edge nodes are naturally split into domain (1,2) and do-
main (3,4) according to their nearest router. Taking ac-
count of origin domain and destination domain produces
four OD groups as shown in the top panel of Figure 3.

10O 3

2 O

Fig. 2. A two router network. R1 and R2 are routers. 1,2, 3,
and 4 are end nodes.

A general version of this domain-based grouping con-
siders the amount of overlap between routing paths. This
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Fig. 3. Clustering tree of OD pairs for the two router network
in Figure 2, using routing path distance (8) (top fi gure) and
information distance (9) (bottom fi gure). The Y-axes are
distance scores.

gives more flexible grouping that is especially helpful
when edge node domains are not readily apparent. There
are two steps to the process.

1. Define a distance between OD pairs based on rout-

ing.

2. Build a clustering tree using the distance metric.
For example, for any two OD pairs ¢ and j, the distance
could be defined as

d(i,7) = number of links used by
either 4 or 5 but not both.

(8)

Clustering methods work from distance scores which,
in this case, measure the separation between OD pairs in
a network. Given the distance metric, hierarchical cluster-
ing (see [9]) can be used to partition the ODs. Distances
between clusters can be measured using single linkage,
which is the minimum distance between cluster elements.
This is sensible because all closely related OD pairs are
placed in a single cluster. ODs are partitioned by cutting
the tree at a specified level. To control complexity of sub-
problems, it is important to restrict the size of each cluster.
A single level-cut may work well for a tree that is well
balanced. But for an ill-balanced tree, multi-level cuts or
other separation methods must be used to determine the
clusters.

The clustering tree using the distance (8) is shown in
the top panel of Figure 3, where the Y-axis is the distance
score. Cutting the tree just above the level 2 produces the
four natural domain-based groups.

Other non-routing based distance metrics can be defined

for OD pairs. For example, information about rate param-
eters comes from the probability distribution f(y; A, ¢) of
link byte counts, so a distance can be based on aspects of
this distribution. A natural candidate is the information
matrix which is defined as

Ii;(A) = —E[0% log(f)/0Xi0\;] = (6:,0;),

where (-, -) is an inner product and 9;, 0; are tangent vec-
tors at A in the coordinate directions A; and \; (See [10]
and its references.) Here 9; can be interpreted as the in-
formation direction corresponding to A; in the sense that
changing the distribution in the direction of 9; will change
;. The information matrix for the link measurement mod-
el (equations 1-3), is shown in equation (5) of [3]. The
distance score between OD pairs 7 and j is then

| 1]

d 1
(4,4) Tl

©)

i.e. one minus cosine of the angle between the tangen-
t vectors. There are two disadvantages to using this
information-based distance. First, computation cost is of
order N} for a network of N, edge nodes. Second, the dis-
tance depends on the unknown rate parameters A, which
are likely to change over time.

A clustering tree using the information distance (9) is
shown in the lower panel of Figure 3. To demonstrate that
the tree reflects information directions, the rate parameters
were taken to be 1000 for OD pairs (1 — 3),(1 — 2),
and 1 for the rest. The information-based tree is similar to
the one based on routing. (In fact, when all rate parame-
ters have the same value, the trees are identical). So infor-
mation and routing paths are somewhat related. However,
the tree based on information is more complex and reveals
more structure. For example, OD pairs (1 — 3),(1 — 2)
stand out and seem to have their own independent informa-
tion direction. (Recall that their rate parameters are 1000,
far larger than the others.)

B. Link selection according to network topology

For the target OD pairs S in each subproblem, a set of
corresponding links must be specified that are informative
for estimating the target rate parameters. There are two
conflicting factors to consider: estimation accuracy and
computational cost. The more links used for estimation,
the better the accuracy but the higher the computing cost-
s because additional parameters must be included in the
optimization. A balance is needed between accuracy and
cost.

In Section V below, the number of parameters to opti-
mize over is shown to be at most O(nf!) where n; is the
number of links and H is the maximum number of hops
from an origin to a destination in the set of links L for the



subproblem. As few as O(n?) parameters are needed for
certain networks (e.g. networks in Results 5 and 6.) Given
this relation between the number of links and the number
of parameters, a limited number of links should be selected
in each subproblem.

A choice of links. For a target set S of OD pairs, let
o = {o0;},d = {d;} be the ny origins and n, destina-
tions respectively. We wish to construct a collection L of
links to use in estimating the rate parameters of S. Sec-
tion 111 showed that the origin-destination link counts are
sufficient to estimate the corresponding OD traffic rate and
this suggests that L should include at least these links. It
remains to determine other links to include in L. For the
moment, all the OD pairs in S are assumed to share the
same path except the origin and the destination link. Let
R1,..., Ry represent intermediate nodes along the route
from o to d. That is,

o=>R  —>Ry— ... >R, 1> R,=>4d, (10)

where = represents multiple links (because of multiple o-
rigins and destinations) and — represent a single link. Let
J be the set of links in subnetwork (10), and J be the re-
maining links in the network. The probability distribution
of link byte counts y[J] depends on the target rate parame-
ters of S but that of y[J] does not. This can be interpreted
as link measurements y[J] contain primary information on
the target rate parameters while y[J] provide secondary in-
formation. Therefore, it seems reasonable to also include
links the intermediate J in L but not all the links of J.

Heuristics will now be used to select additional links
for L. In subnetwork (10), Ry, ..., Ry are intermediate
nodes. Any traffic arriving at R; will be forwarded to an-
other node. Adding all links that are connected to the in-
termediate nodes in subnetwork (10) gives

o = R <+ +~— R, = d
™ 118 (11)
rlf'l I'hf'h

where r; and ¥; represent possibly multiple remaining in-
coming and outgoing links on R;. For example, r; in-
cludes the outbound links to o. To limit the number of
links in subnetwork (11), the topology is simplified. Each
link set r; and r; is aggregated to form superlinks r; and 7.
Such a aggregation of links is legitimate, because no traffic
can pass through two of these incoming or outgoing links
in loopless routing. After combining links, the subnetwork
becomes

o = R +— ... «— R, = d
™ & (12)
’1”1’)7‘1 rhfh

This subnetwork is complete in the sense that any traffic
entering an internal node on one link will leave on another

while the edge nodes are pure sources and sinks. In this
subnetwork, o and the r; are the only possible origins and
d and the 7; are the only possible destinations. Also, at
each intermediate node R;, the total incoming traffic bal-
ances the total outgoing traffic and therefore one redundant
link can be removed per intermediate node. For example,
the reverse links R; < R;y1 can be removed without los-
ing information. Thus, subnetwork (12) displays the final
choice of link set L except the reverse links are removed
because they are redundant.

Until now, the target OD pairs S are assumed to have the
same routing path except the first and last hop. However,
the link selection strategy can be easily generalized to an
arbitrary set of target OD pairs.

Algorithm 1: Start with an empty link set L.

1. Add the target origin links and destination links to
L.

2. Add to L intermediate links used by target ODs as
well as their reversals (that is, the same links in the
opposite direction.)

3. At each intermediate node R; along the routing
paths of target ODs, combine the remaining incom-
ing links into a superlink and add it to L. Similarly,
add outgoing superlinks to L.

4. Remove redundant links from L.

Toward the center of the routing path (or the core of the
network), more aggregation with interfering traffic is like-
ly. Therefore, link traffic within the center may provide
little additional information. To further reduce the link set,
intermediate links and superlinks in the center can be ex-
cluded from in Step 2 and 3.

Information loss and recovery. From an information
viewpoint, L should include the most informative set of
links for estimating the rate parameters for S. Determin-
ing these links is a complicated optimization problem. S-
tarting with the origin and destination links, a greedy ver-
sion would sequentially select each new link to give the
biggest increase in information on the target rate param-
eters. ‘Information,” in this context, could be the inverse
variance product for the target rate estimates. The infor-
mation depends on the unknown rate parameters but our
experience suggests that the estimation efficiency of links
selected using Algorithm 1 is not overly sensitive to the
rate parameters, (also see the application in Section VI.)

V. GROUPING ODS TO REDUCE PARAMETERS

In each subproblem of the simple method described in
Section 111, the two link measurements, y[o] and y[d], are
re-expressed using the three statistically independent ag-
gregated byte counts, y[od)], y[od], and y[od] (equation 7).
In this reduced form, each subproblem contains only three
rate parameters and is inexpensive to solve. This can be



done for an arbitrary set of links L used in each subprob-
lem.

There are a few theorems in this section. To keep the pa-
per focused and concise, proofs are omitted. An extended
version of the paper is available from the authors.

For a given link set L = {L;}, group together all ODs
that use exactly the same combination of links from L. Let
P = {P;} denote this disjoint collection of OD sets. The
aggregated byte counts y[P] have the following proper-
ties.

1. The elements of y[P] are independent.

2. Each link measurement in y[L] is a sum of some

elements from y[P]; i.e.

y[L] = Ay[P],

for some matrix A* with elements 0 or 1.

Thus, link counts y[L] are represented in the same for-
m as in the full problem (equations 1-3), but in terms of
reduced number of independent byte counts y[P]. This is
the generalization of the simple strategy leading to equa-
tion (7). If L contains the origin and destination links for
the target OD pairs, rate parameters for these OD pairs are
estimable. Therefore methods developed in [3] (reviewed
in Section I1) can be directly applied to solve this subprob-
lem. In addition, it can be shown that the grouping P is
optimal among all groupings of OD pairs that satisfy the
two properties above, in the sense that it has the smallest
total elements. For this reason, this grouping will be re-
ferred as the optimal grouping.

Following are two iterative algorithms that efficiently
construct the optimal grouping P. Let L = {L;,1 <
i < m}, and let C be the set of all intersections of
any number of elements in L, ie. C = {L;; Nn...N
L;,, | (i1,---,im) isanindex set}. Write C = {¢;,1 <
i < n.}, where c; are ordered in cardinality from smallest
to largest.

Algorithm 2: Set P be an empty set. For each L; €
L,i =1,...,n let U be the union of all elements in P,
update P by

P+ {LZ‘P, I_/iP, Lzﬁ ‘ Pec P}
Algorithm 3: Set P be an empty set. For each c; €
C,j = 1,...,n let U be the union of all elements in
P, update P by

P+—PuU {C,[j}

Algorithm 2 runs through the link set L to generate the
grouping. Algorithm 3 uses all intersections of L. For net-
works in which the set of all link intersections is the same
as the set of all pairwise intersections (e.g. networks in Re-
sult 6), Algorithm 3 is efficient since the set of all pairwise
intersections will usually be precomputed to speed up the
optimization algorithm.

Algorithm 3 implies that the total number of elements
n,, Of the optimal grouping P is no larger than that of C.
This fact can be used to bound n,,. A tighter bound is ob-
tained when links L are selected as in Algorithm 1. For
this, a special case of fixed routing, consistent routing, is
considered. Consistent routing means that there is only
one route between any two nodes, including both interme-
diate and edge nodes. This routing property is usually a
result of routing cost optimizations. Although this may
not hold for the full network, it may hold for the subnet-
work under study. A main conclusion from these bounds
is that n,, only depends on the subnetwork size in the sub-
problem and is independent of the size of the full network.
Therefore as long as the subnetwork size is limited, each
subproblem is of limited computational complexity.

Result 4: For a network with at most H hops from an
origin to a destination,

H n
Ny < Z il
i=1

In particular, n, < 2™ — 1.

Result 5: Suppose L is chosen as in Algorithm 1. Let
n1,no, h be the number of origination, destination and in-
termediate nodes respectively. Then

1. for fixed routing,

np < (N1 +ng + 1)23h_1 +ning — 1.
2. for consistent routing,

Ny S (n1 + h)(’n2 + h)

Not all parameters A[P] of the optimal grouping P can
be estimated. It is important to identify the estimable pa-
rameters so that their estimates can be extracted. This is
not a problem for the target OD pairs in the subproblem,
as long as their origin and destination links are included in
the selected links. However when all rate parameters are
estimable, there are no redundancies. The following result
gives specification of networks for which this is true. In
this case, Algorithm 3 implies the total number of param-
eters in A[P] is less than n;(n; + 1)/2.

Result 6: All rate parameters A[P] for the optimal
grouping P are estimable,

1. ifrouting is consistent, and if traffic on any two links

traverse in a unique order.

2. ifrouting is consistent and hierarchical, and if traffic
on any two links in the same domain traverse in a
unique order.

3. if routing is consistent and symmetric.

V1. APPLICATION TO MULTI-ROUTER NETWORK

We consider a real network using four different estima-
tion methods to show that the divide-and-conquer method-



ology can perform well compared to full-information max-
imum likelihood. Byte counts measurements from the net-
work depicted in Figurel have been recorded every five
minutes since August 1998. The network belongs to Lu-
cent Technologies and serves many hundreds of business
users. Measurements are gathered automatically through
standard SNMP polling of link interfaces on routers. Al-
though the actual network contains about 50 edge nodes,
we pooled many of the low-usage links with higher-usage
links to produce the skeleton version shown in Figurel.
The primary reason for aggregating nodes was to reduce
the network to a size that full-information maximum like-
lihood estimates could be computed within time and mem-
ory limitations.

The example network has six intermediate nodes, R1,
R2, R3, R4, S, and G, 18 edge nodes (the small open cir-
cles), and 46 unidirectional links. Among the intermediate
nodes, R1 through R4 are routers, S is a backbone switch
and G is a gateway router to the Internet. The total traf-
fic coming into each intermediate node matches the total
going out. Removing these redundancies leaves 40 in-
dependent link measurements and 182 = 324 OD pairs.
Routing is hierarchical: traffic between any pair of routers
R1 through R4 goes through the backbone switch S. Traf-
fic from inside the corporate network to the Internet must
traverse the R4-G link.

The best way to validate our traffic matrix estimates
would be to compare them with direct measurements of
point-to-point traffic. This is feasible on a small scale us-
ing, for example, Cisco’s NetFlow collector in conjunction
with CAIDA’s Cflowd tool [11]. Our own experience ([3])
and that of others ([12]) shows that synchronization prob-
lems can make reliable data collection difficult. An alter-
native is to estimate the mean traffic for each OD pair from
actual link measurements but then analyze simulated da-
ta from the estimated model. This has the advantage that
direct verification is possible by comparing estimates to
known values for both theoretical mean OD traffic, A and
the, typically unobservable, sequence of OD byte count
vectors, x1,...,XN-

Figure 4 plots the 324 OD rate parameters (elements of
A) that we used to generate simulated traffic. These come
from an estimate of X based on a sequence of N = 25 link
measurements collected over two hours on a morning in
October 1998. The vertical scaling is log(100 + A) where
the rates X\ are measured in bytes/second. The rates vary
by more than three orders of magnitude and have a highly
skewed distribution. This is consistent with our expecta-
tions and our previous experience with directly measured
traffic matrices.

Independent OD vectors, x1,...,xy, were then simu-
lated with means A and appropriate variances. The corre-
sponding link measurements are easily obtained as y; =

100K — Hs
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Fig. 4. Rate parameters A (bytes/sec) used for simulation.

Ax;. The following results use the link data {y:} to esti-
mate A and {x;} with four methods.

Two methods represent the divide and conquer ex-
tremes: FULL refers to the full-information method using
all links to estimate all OD parameters as in [3]. SIMPLE
represents the other extreme where each OD uses only the
corresponding origin link and destination link.

The remaining two methods partition OD pairs based on
grouping the routers into either three or five domains:

DIVIDE-3: {S, R1, R2},{R3, R4},{G}, and

DIVIDE-5: {S, R1},{R2},{R3},{R4},{G}.

In each case OD pairs are partitioned according to their o-
rigin and destination domains. For example, in DIVIDE-5,
all pairs with origin node on R2 and destination node on
R3 are grouped into the same subproblem. This is a spe-
cial case of clustering nodes based on routing similarity
as discussed in Section IV-A. Corresponding to each set
of ODs, a set of links is then selected using the scheme
of Section IV-B. This completes the divide portion of the
method. Since routing is consistent and symmetric, there
are no redundancies in the rate parameters of each sub-
problem (Result 6).

The complexity of the four approaches is summarized in
top portion of Table I. The number of floating point opera-
tions (flops) required for maximizing the likelihood drops
dramatically as the network is divided into more pieces. In
this respect DIVIDE-5 is a factor of 10 better than FULL.
This is true even though more subproblems use more to-
tal links and estimate more total parameters because they
overlap with one another. The flop ratios are based on the-
oretical scaling results for a large number of edge nodes.

TABLE |
Four estimation methods: complexity and estimation performance

Method FULL DIVIDE-3 DIVIDE-5 SMPLE
flop ratio 1/1 1/3 1/10 1/3000
subproblems 1 9 25 324
total links 40 169 306 648
total parameters 324 658 822 972
A error scaling 1 1.15 1.39 2.28
x error scaling 1 1.05 1.24 1.72

For a sample of size N = 25, Figure 5 compares esti-



mates to true values of both A (upper) and a representative
x (lower) from the simulated sample. Large traffic rates
(both A and ) are estimated well by all of the divide and
conquer methods. Small rates are more difficult to estimate
and the upper display shows the accuracy degenerating as
the network is divided into more pieces. Inaccuracy in es-
timating x (lower), however, does not degenerate as much.
This is due to the fact that x estimates are constrained by
y = Ax which can be fairly restrictive when there are
large variations among the link counts in y. The last two
rows of Table I report the increase in error sums of squares
on the log(100+ z) scale. Additional simulations run with
samples of size 50, 100, 200 and 400 produce similar re-
sults except that accuracy improves with sample size.

Although the primary focus has been on estimating A,
there is an issue regarding the scale parameter ¢ because
each subproblem produces a separate estimate. This has
advantages and disadvantages. The advantage is that the
method is robust to different scaling behavior across a
large network because scale is only estimated locally to
the subproblems. On the other-hand, if the scale is con-
sistent across the network estimating it globally could pro-
duce statistically better estimates of X, especially if the
subproblems are small.

A second ’local vs. global’ issue involves estimating x.
There are three approaches: (i) use equation (6) and it-
erative proportional fitting (IPF) within each subproblem
and assemble estimates for the target ODs to produce the
complete estimate; (ii) as above except where subproblem-
s overlap, average the overlapping pieces before assem-
bling; (iii) assemble the complete estimate of A, and then
use equation (6) and IPF globally. Figure 5 uses the sec-
ond approach with straight averaging, although one could
reasonably use weighted averaging with weights inversely
proportional to uncertainty measured by the inverse infor-
mation matrix.

VILI.

A computationally scalable divide-and-conguer method-
ology has been developed to estimate traffic matrices for
networks with a large number of edge nodes. The idea
is to divide the estimation problem for a large network
into several smaller subproblems and then solve each of
these subproblems. For a network with N, edge nodes, the
computational complexity can be reduced from O(N?) to
O(N2) through this approach.

There are several additional advantages of the proposed
method. First, since we break up the full problem into in-
dependent subproblems, parallel computing could easily
be applied with little need for communicating among pro-
cessors or a central point of control. Second, since each
subproblem involves only limited portion of the full net-
work, the method is adaptive and more robust to possible
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Fig. 5. Estimates of A and x (bytes/sec) against true values for
the four methods (V = 25).

misspecification of the full model as, for example, if s-
cale parameters vary over different regions of the network.
Third, the method can be easily adapted to deal with un-
reliable or missing link measurements. These links can
be simply excluded from the sets of measurements used
by subproblems. Fourth, a variety of related problems fit
within this framework. For example, some routers are able
to measure byte counts for at least some destination nodes.
Often, however, other routers in the network do not have
this capability. In this case, the traffic matrix is partial-
ly observed and this information can be combined with
link measurements to estimate the complete traffic matrix.
These situations are appealing because there is better con-
trol on the number of unknowns per measured quantity.
Several possibilities for future work fall into two broad
categories—refinement and extension. Some possible re-
finements are: 1) develop a theory for link selection based,
for example, on information measures; ii) develop method-
s for combining estimates from overlapping subproblems;



iii) explore the possibility of using estimates obtained from
one subproblem as supplemental information for another.

Regarding extensions, an immediate need is confidence
and percentile estimation. A bound on the 95th percentile
during times of peak network usage would be extremely
useful for planning and provisioning. By using the inverse
information matrix to measure uncertainty of the parame-
ter estimates, combining this with the conditional distribu-
tion of x, it may be straightforward to produce reasonably
good quantile bounds. Another possibility is to extend the
methods to accommodate dynamic routing. Some of the
developed here can be fairly easily generalized if the link
traffic can be expressed as weighted sums of the traffic be-
tween OD pairs. A final extension, is to include packet loss
in the traffic model. Some per-link information of packet
loss may be available from router interfaces, but this would
need to be incorporated into the procedure for estimating
traffic matrices.
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APPENDIX: NOTATION

o,d,r origin, destination, and generic nodes
Ty number of links in a subnetwork

i = (0,d) OD node pair

L, Ly OD pairs with traffic on links  and 14
S, St sets of OD pairs

S ={S1,...,Sn} ordered collection of OD sets

L={L,...,Ly,} ordered collection of link sets

S1S9 = S1 NSy intersection

T byte count for OD pair 4

x = (z1,...,z7)" all OD byte counts, unobserved

y = (y1,-..,ys)" all link byte counts, observed
A=Ey mean byte counts for all OD pairs

N, numbers of edge nodes in the whole

network
byte count total over OD pairs in S
mean byte count total over S

Y[S] = Xies T
AlS] = Ey[S]

y[8] = (y[S1), - -, y[Sm])’

byte count totals over Sy, ..., S,
A[S] = (A[S1],- -+, A[Sm))

byte count means over Sy, ..., Sn

¢ scale parameter

A fixed J x I routing matrix
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