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Abstract

The self-similarity of network traffic has been convincingly established based on detailed packet

traces. This fundamental result promises the possibility of solving on-line and off-line traffic engi-

neering problems using easily-collectible coarse time-scale data, such as SNMP measurements. This

paper proposes a statistical model that supports predicting fine time-scale behavior of network traffic

from coarse time-scale aggregate measurements. The model generalizes the commonly used fractional

Gaussian noise process in two important ways: (1) it accommodates the recurring daily load patterns

commonly observed on backbone links; and (2) features of long range dependence and self-similarity

are modeled only at fine time scales and are progressively damped as the time period increases. Us-

ing the data we collected on the Chinese Education and Research Network, we demonstrate that the

proposed model fits five-minute data and generates ten-second aggregates that are similar to actual

ten-second data.

Index Terms

Daily pattern, Fractional Gaussian Noise, Poisson process.

I. INTRODUCTION

Network traffic engineering problems are often addressed with readily available aggregate

statistics such as packet counts in fixed intervals. For example, engineers at Global Crossing

have reported using aggregate traffic statistics on label switched paths (LSPs) to resize and

reroute the LSPs in both core and regional networks [15]. This approach is practical and has

proven effective, even if it may not be as refined as a method that takes into account detailed

traffic descriptors or measurements of packet-level timing and queuing behavior. Routine traffic

monitoring, wavelength assignments, route optimization, admission control policies for new data

services and peering policies are also amenable to practical solutions based on aggregate traffic

counts. Elegant optimization techniques have been proposed for many of these engineering

problems but they often require detailed traffic descriptors, such as effective bandwidths of traffic

on individual LSPs or between source-destination pairs. Typically these specifications are not

precisely known, they vary by time of day, and they change as Internet Service Providers (ISPs)

continue to add customers, provision additional services, and upgrade network elements.

The simplest and most common type of traffic measurements are packet counts and byte

counts taken at, say, five minute intervals. Five-minute packet counts are easy to collect and

store for a large number of network elements over long periods of time, but the data are not as
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rich as traces of time-stamped packet headers that identify the sizes and spacings of individual

packets as they traverse the network. Such packet traces, however, are not typically available

with the comprehensive coverage over both time and topology that is needed to address many

ongoing network-wide traffic engineering problems. Even if packet traces are available, most

or all of the relevant information for many engineering problems might be obtained from coarse

time-scale measurements. This paper explores ways to extract information relevant to fine time-

scale dynamics using aggregate statistics polled regularly from router and switch interfaces or

from LSPs in Multiprotocol Label Switching (MPLS) networks.

The vast literature on characteristics of network traffic based on detailed packet trace data

provides strong evidence that different types of traffic on high-speed data networks are self-

similar, so the Hurst parameter [11] which describes long range dependence, remains the same

for different levels of aggregation. These include studies of Local Area Network traces [9], Wide

Area Network traffic [12], and variable bit rate traffic [1]. Crovella and Bestavros [2] provided

an example in which the estimated Hurst parameter remains constant as the aggregation time

scale increases from 1 second to 3 minutes. The self-similarity of network traffic at time scales

up to several minutes suggests that coarse scale five-minute measurements can be used for traffic

engineering that depends on finer time-scale characteristics. But this is challenging because the

previous self-similar models are stationary so they do not allow daily and hourly patterns in

traffic load [13]. On the other hand, sequences of five-minute counts long enough to usefully

estimate self-similar properties are typically too long to regard as stationary: 24 five-minute data

values cover a period of two hours and the average load on a link can easily double in that time.

This paper provides a new Nonstationary Traffic Train (NTT) model that supports predict-

ing fine time-scale behavior of network traffic from coarse time-scale aggregate measurements.

The NTT model generalizes the commonly used fractional Gaussian noise (fGn) [9], [14], [2]

process in two important ways. (1) The model accommodates the recurring daily load patterns

commonly observed on backbone links and can allows for day of week effects or trends in the

traffic rate over longer periods of time. (2) Long range dependence and self-similarity are mod-

eled only at fine time scales and are progressively damped as the time scale increases. The result

is a traffic model that is more realistic for describing patterns observed in five-minute aggregate

data and is consistent with the fGn model at fine time scales.
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Duffield, Massey and Whitt [3] considered the properties of a more general nonstationary

offered-load model in which a non-homogeneous Poisson process describes customer arrivals

and the time-varying bandwidth requirement of each customer follows a general random pro-

cess. The NTT model is a Gaussian approximation to the special case where traffic train dura-

tions are exponentially distributed and within-train packet-counts are fGn processes. We provide

detailed formulas for the NTT covariance structure. More important, however, is our empirical

demonstration that the NTT stochastic process model provides sound inference on network traf-

fic properties at fine time scales using only coarse scale traffic measurements. Inference at fine

scale is made possible by the self-similarity property of the within-train fGn processes. Using

seven days of five minute packet count data from the China Education and Research Network,

the fitted NTT model is used to estimate upper quantiles of 10 second counts. The estimates

track empirical quantiles with good accuracy.

The remainder of the paper is arranged as follows. Section II describes data that we analyze.

Section III derives our non-stationary generalization of the fGn model as the superposition of

a large number of packet trains that arrive and depart the network in a non-stationary fashion.

Section IV describes estimation of model parameters along with a bootstrap method for assess-

ing uncertainty. Section V shows fits of the model to packet count data. Section VI concludes

with a few remarks.

II. THE DATA

The China Education and Research Network (CERNET) is the nationwide education and

research computer data network in China funded by the Chinese Ministry of Education and op-

erated by Tsinghua and other leading universities. The network serves more than 750 education

and research institutions and approximately 4 million users throughout the country. CERNET is

organized hierarchically with a nation-wide backbone connecting ten regional networks that in

turn serve lower-level provincial and campus networks.

We have collected packet and byte counts at 10-second intervals using SNMP polling on all

interfaces of two CERNET routers and two switches running in the CERNET backbone at 100

Mbps. Ten-second polling does not burden the devices or the network but would present storage

issues if continued permanently on a large number of devices. Five-minute polling intervals are

common for network management systems and typically allow several months of traffic data to
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be maintained online. To mimic coarser polling, we aggregate the 10-second data to intervals

300-seconds (five-minutes.)
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Fig. 1. A sample of packet count data at two levels of aggregation: 300-second (upper plot) and 10-second (lower plot.) The

packet rates clearly follow a daily pattern but also wander significantly from it. The gray curves in the background are smoothed

daily averages across 12 consecutive weekdays of data.

Packet count data for a single representative day in one direction on a 100 Mbps link are plot-

ted in Figure 1. Approximately 80% of the packets are TCP. The lower plot shows the 10 second

packet counts (expressed in packets per second) while the upper plot shows the corresponding

300-second aggregate rates. The plots for all seven days (not shown) demonstrate several char-

acteristics of the packet count timeseries. There is a consistent daily pattern in which the traffic

level begins to rise steeply around 7 a.m. and peaks at 10:30 a.m. Additional peaks are seen at

3 p.m. and 9 p.m. After 9 p.m. traffic levels taper into the early morning hours. The late-night

decline is more gradual than the 7 a.m. rise, however. These data also tend to wander to one
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side of the mean level for periods of time. This is characteristic of the long-range dependence

observed in many kinds of network traffic data. Another obvious feature of the packet counts

is that the 10-second rates are much more variable than the 300-second aggregates. This scal-

ing of variability with the time resolution is an important feature that the NTT model needs to

capture—but it should do so while only using information in the 300-second traces.

The 300-second data is easy to collect within CERNET or any other data network. Many

traffic engineering problems, however, need to account for variations and burstiness of traffic

over much finer timer scales. Variations at 10 to 100 milliseconds are relevant for many problems

but in most cases data at these scales are not widely available. In the next section a model is

developed for coarse-scale aggregate packet counts that can be used to infer characteristics of

counts at finer time scales even if burstiness is not as evident in the coarse scale counts. We use

it in Section V to predict characteristics of the 10-second data using only the 300-second series.

III. THE MODEL

It has been well established that network traffic, such as packet count sequences over short

periods of time, can be modeled as a fractional Gaussian noise (fGn) process [9], [14], [2],

which is necessarily stationary. To understand fine time-scale behavior of network traffic based

on coarse time-scale SNMP measurements, we extend the fGn model to the non-stationary traffic

train (NTT) model.

The fGn model for network traffic has been motivated using a byte-train formulation with

ON/OFF periods following long-tailed distributions [14]. This is depicted in Figure 2 showing

a large number of active byte trains each with active ON periods followed by inactive OFF

periods. The ON and OFF periods within a train are independent and the trains are independent

and have identical statistical properties. The curve at the bottom of the figure is the aggregate of

the trains. Its value across each sampling interval is equal to the total ON time of all trains during

that interval. As the number of trains increases, the fine time-scale aggregate process approaches

fractional Gaussian noise. In this byte-train formulation, long-range dependence of the aggregate

comes from the long-tailed ON and OFF distributions. More detailed mathematical descriptions

are given in Sections III (A) and (B).

Figure 2 shows a nonstationary byte-train formulation that underlies the NTT model. Instead

of a fixed number of byte trains across all time, trains now arrive and depart the system at
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aggregate   --->   FGN

train 1

train 2

train n

time

Fig. 2. Superposition of byte trains with ON and OFF periods. Aggregation is over trains and across regularly spaced time

intervals. The aggregate process tends toward fractional Gaussian noise which is self-similar and inherits long-range dependence

from the individual trains.

random times. Train arrival times form a non-stationary Poisson process and their lifetimes are

exponentially distributed with a large mean. The figure depicts a situation where the arrival

rate of new trains suddenly increases at the halfway point after which the number of active trains

tends to increase to a new level. With a large number of trains the aggregate process shown at the

bottom of the figure represents our new NTT model. At small time scales it inherits properties of

self-similarity and long-range dependence from the individual ON/OFF processes but the NTT

model is nonstationary if the train arrival rate varies through time. Also correlations at larger

time-scales are damped in the NTT model because the trains do not continue forever.

To simplify the derivation of the NTT model, we can also think of an fGn sequence as a

superposition of a large number of independently and identically distributed fGn processes, each

of which represents an active traffic train. Although there is a distinction between byte trains

and traffic trains, that is, byte-trains are 0-1 processes whereas traffic trains are fGn processes,

in either case the aggregate traffic follows the conventional fGn model so the distinction is not

important when modeling aggregates. Using fGn traffic trains simplifies the theoretical NTT

model formulation: and NTT model is the superposition of a large of number of active fGn

traffic train segments, where train arrivals form a non-homogeneous Poisson process and train

durations are exponential.
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aggregate traffic

train arrival rate

train n

train 1

Fig. 3. Superposition of byte trains with random arrival and departure times. The aggregate process tend toward the NTT

model. Non-stationarity comes from changes in the train arrival rate over time. Self-similarity and correlation properties at fine

time-scales are the same as for fractional Gaussian noise but these are damped at larger time-scales.

A. Network traffic self-similarity and fractional Brownian motion

Network traffic counts aggregated over short time scales have been found to be self-similar

[9], [14], [2] over short time periods up to several minutes. The increments of a continuous time

process ���������
	���
 ������
�� are said to be self-similar with parameter ����������� if for any
��� � and any �! and "

�����#�! %$&"��'�(���#�! )�*�(+, � �.-0/ �����! 1$ � "2�'�(�����! )�3�54

where the notation �����#���*�6+, �879�#���3� means that the two processes �����#���*� and �87:�����3� have

the same finite joint distributions [11]. The self-similarity parameter � is also called Hurst

parameter.

Fractional Brownian motion (fBm) is the unique self-similar Gaussian process so it makes

a natural choice for a model of cumulated traffic. Increments of an fBm process are known as

fractional Gaussian noise (fGn) which is the model used for network traffic counts. More specif-

ically, the fGn model for network counts with time scale ; at discrete times � , �<4*=?>@4*=�A04CBDBEB is
written as

FHG�I ,�J ;K$L; /NMPO / �#���34 (1)

where FHG�I denotes the aggregated traffic over the time interval �Q;'�34*;R���S$T>U�V�34 and O / ����� is a
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stationary Gaussian process with mean zero and autocovariance function� � � 4V� , � $ ��� � 4 M�� ��� E � O / � � � O / �����3�
, >

A
�
	 � $ > 	 � / $ 	 � � > 	 � / ��A 	 � 	 � /�� B (2)

B. A nonstationary traffic train (NTT) model

To develop the NTT model, think of F G�I as counts from a large number, 
 �#��� , 
 , of

independently and identically distributed traffic trains, each of which is itself a fGn process with

the common parameters J , M � 4 and � . So,

FHG�I 	 ��
 I , 
 � ,�J 
K; $�; /��� � ��� M O��
���
/ �#���3B (3)

Now J can be interpreted as the traffic rate per train and per unit time.

Next, consider a latent Poisson process � I with intensity �%����� ���%������� ��� for the cumulative

count of traffic train arrivals in the time interval ���<4V��� . Let train lifetimes or durations be inde-

pendent exponentials with mean � and let � �#��� denote the set of active trains at time � . Then
 �#��� , 	 � �#��� 	 , � I � number of train deaths in �Q�04V��� . Proposition 1 describes the distribution

of the 
 ����� .
Proposition 1: Suppose 
 ������� Poisson �� �����3� with given initial mean  ��Q��� , then
 �����!� Poisson �� ��#���*�

and autocovariance function

cov ��
 � � �)4"
 �����3� ,  �$#&%('H� � 4V�*� � exp )�� 	 �'� � 	� * 4 (4)

where E ��
 �����3� ,  ����� has the following recursion relationship ��#�P$,+ ��� ,  ����� exp ) � + �� *
$ exp ) � + ��-*&.0/ I � �#�P$21 � exp ) � 1�3* � 1 (5)

for any + � � � , or equivalently, �  ������ � $  ��#���� , � �#���3B (6)
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A simple proof is provided in Appendix (A), although the results are not new. More general

results in the context of � I��.O�� 
 � queues are given in [5]. (See, for example, Theorem 2 and

Corollary 4 of [5] and included references.)

Since � �#���
� � , Equation (6) imposes the following constraint on � ��#���� � �
�  ��#���� � 4 (7)

in addition to the positivity constraint � � � .
For small or infinitesimal time scale ; we can write (3) as

F�IEG ,�J ;�
 ����;N� $�; / ��
��� � IEG � MPO �

���
/ �#���)B (8)

Note that

E � F�IEG � ,�J ;� ��#��; �
and

var � F2IEG � , � J � ; � $L; � / M�� �  ����; �)B
Since E ��
 ����;N�*� , var � 
 �#��; �3� ,  ����;N� and � � IEG �� � IEG � tends to one in probability as  ��#��; �
	 
 4
then for any �

� % #� � IEG � ��
 F�IEG � E � F�IEG �� J  ����; �
, J ��� � ; � % #� � IEG � ��
 
 �#��; �1�  ����;N��  ��#��; �

$ ; / J - ��� � M � %(#� � IEG � ��
 �
�
��� � IEG � O � ���/ �#����  ����;N�

+, J ��� � ;
���#��� $L; / J - ��� � M�� �����
where ���#��� and � �#��� are independent standard normal deviates. Making use of (4) leads to

cov ����� � �)4��������3���  �$#&%(' � � 4V�*� ; ��  �� � ; �  ��#��; � exp ) � 	 �1� � 	 ;� * B
Following the same arguments used to prove Proposition 1, we can show that

cov � � � � �)4 � �#���*�
�  � # % 'H� � 4V�*� ; ��  � � ; �  �#��; � exp ) � 	 �1� � 	 ;� * � � � 4�� � � 4 M��� �)B
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This leads to the following traffic train model for infinitesimal time scale ; .

F�IEG +, J ;� ��#��; �P$ J ;� ��� � ����;N� ���#��; �
$ M � ; /  ��� � ����; � � �#��; �
$ M � ; ��� �  ��� � �#��; � � ����; �)4 (9)

where ���������3� , � � �#���3� , and � � �#���*� are independent, mean zero Gaussian processes with autoco-

variance functions

cov ����� � �34��������3� ,  �$#&%('H� � 4V�*� ; ��  �� � ; �  ��#��; � exp ) � 	 �'� � 	 ;� * 4
cov � � � � �34 � �����3� , cov ����� � �34��������3� � � � 4V� � � �)4

and

cov � � � � �34 � �#���*� , ���� > for � , � ;
� otherwise.

The process � � �#��; �3� is white noise and is included to accommodate possible extra variability,

such as measurements noise.

Next we derive the NTT model for a finite time scale � as the aggregated traffic counts when

infinitesimal counts follow (9). Let �&�#��� � denote the cumulative traffic on the link in the

interval �Q�04V��� � . Then F ����� � � ������� $	� � ��������� � and the distribution of the increments
F �#��� � can be obtained by representing them as a sum of increasingly smaller increments and

then using (9); that is, F �#��� � is

� % #
 ��
 
 - �� � �  
� �������&$ ����$�>U��� ��� �1�(�&�#���&$���� ��� ����4
where for large � , the summands approach the infinitesimal process (9). Let ; , � ��� and1 � , ����$�� ; . Finding the NTT model representation at the time scale � requires determining

the following limiting processes:

� �#��� ��� J � %(#
 ��
 
 - �� � �   �$1 � ��;14
������� � � J � % #
 ��
 
 - �� � �   ��� � � 1 � � ���$1 � ��;14
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� �#��� ��� M � � % #
 ��
 
 - �� � �   ��� � � 1 � � � � 1 � �V; / 4
and � �#��� � � M � � % #
 ��
 
 - �� � �   ��� � �$1 � � � � 1 � �V; ��� � B
Although we have been mathematically somewhat informal, the limiting processes are inde-

pendent Gaussian with covariances as described in the following formal definition of the NTT

model at finite time scale � .

Definition 1—Nonstationary Traffic Train Model:

Aggregate traffic counts F ������� at time-scale � follow an NTT model if they can be represented

as
F ����� � , � ������� $ ���#��� � $ � �#��� �P$ � �#��� �)4 (10)

where
� ������� is a deterministic mean curve� ����� � , J .��  �#���6$21 � � 1 (11)

where  ��� � satisfies (6) for some nonnegative intensity function � ��� � , and where �����������*� , � � �#��� �3� ,
and � � �#��� �3� are independent zero-mean Gaussian processes. Let � , exp �5� � - � �
B Variations

from traffic train arrivals and departures are represented by � �#��� � with autocovariance

� ��� �
�
�#�34V��� , A J � .�� . 	

  �� � � $ ���
� 	 - � � � � 1
and � ��� �

�
� � 4V��� , J � . � . �  �� � � $ 1 ���

�
� I -
� � � � - 	 � � � 1

for � � � . Within-train traffic variations are represented by the process � �#��� � with autocovari-

ance

� � � �
�
�#�34V��� , A � � A.� �L>U� M �� . � . 	

  � �R�P$ �@��� 	 - �
�$19� �@� � / - � � � � 1

and

� � � �
�
� � 4V��� , � � A � � >U� M �� �

�
� I -
� � .�� .��  � � � $21 �

� � - 	 � � ���1� � � $ � � 1 � � /S- � � � � 1 4
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for � ��� . Additional independent noise is represented by the process � �#��� � with autocovariance

simply

� � � �
�
� � 4V��� ,

�� � M ���� �  � � �P$21 � � 1 4 if � , � ;
�<4 otherwise.

If � , > , then � � �#��� �3� +, �����������*� and if � , > � A then � � �#��� �3� +, � � �#��� �3� .
IV. ESTIMATION

In accordance with the hierarchical formulation of the NTT model in terms of a train arrival

process and a within-train packet processes, we use a two-step procedure for fitting the NTT

model to data. First, we estimate the daily pattern  ���� � with a smooth curve. Second, we find

the maximum likelihood estimate of the parameters J 4 M �� 4 M �� 4"�14*� given  ��� � , � ��� � . Third,

we describe a bootstrap method [4] for assessing the uncertainty in the estimated parameters.

A. Estimation

Here we estimate J  I from � -second aggregate data collected across � days having similar

daily traffic pattern. We use � , ����� � , 	 �@� seconds. Let 
F
�
I be the average across

� days of the observed number of packets during the daily time interval � � �34 � �#� $ >U��� for

� , �<4 BEBDBE4"� , A�� �
� � �
� � � ����> . Then

E ��
F
�
I � , J . �  

�
I � 	 � 1 B ��� � is expected to vary smoothly over time and, therefore, it is estimated by smoothing or

filtering the 
F
�
I values to smooth them further. The smoothing uses cyclic time indices so that

the end of the day is adjacent to its beginning. We use a filter that corresponds to fitting a local

least squares quadratic curve to the data within a three hour window centered at �R� with tricube

weights; that is, 
F �
�
I -��
�

(for
	�� 	 ��� � 	���� � ��� � � � A � � ) has weight � > � 	�� � � 	 � � � in the local

regression.

The smoothing filter produces estimates of J  I where each � represents a multiple of five-

minutes. These discrete points are then joined using quadratic interpolation (with continuous

first derivatives) to obtain an estimated daily pattern, �J � �� �R��� as a curve in continuous time.
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Given the daily pattern  ���� � , the model for the packet counts is simply a variance-component

normal model. We apply Quasi-Newton method to find the maximum likelihood estimates of
J 4 M �� 4 M �� 4"�'4 and � , where � is constrained by (7).

The likelihood function has a simple expression using the vector and matrix notation. Let �
�

denote the vector of aggregate traffic measurements F
�
I in day

�
and �

�
the corresponding vector

of means
� � � ��� . We model the �

�
’s as independent with distribution determined by model (10):

�
�
���

� � �
+� N � �<4 J�� � $ M �� � � $ M �� � ��� (12)

where � � , J - � � � � �
�

, � � , M - �� � � � �
�

and � � , M - �� � � � �
�

. The log-likelihood is

	 � J 4 M �� 4 M �� 4"�'4 � � , � ��
A � ' �QA�
 �1� �
A
� '
�������

� >A
�� � ��� ��� � ���

�
����� - � ��� � ���

�
�

where � , � � J 4 M �� 4 M �� 4 � 4*� � , J�� � � � �%$ M �� � � � �'4*� �S$ M �� � � . Dependence on time scale �
and on  � � ��� has been suppressed from the notation. Numerical maximization can be performed

using derivatives of
	

with respect to the parameters.

Appendix (B) gives the needed formulas for calculating the covariance matrices. The first-

order derivatives of the likelihood function, not presented here, require evaluation of incomplete

gamma functions.

B. Assessment of the uncertainty in parameter estimates

To assess the uncertainty in the estimated parameters, we apply a variant of the bootstrap

method [4], which is a simple and widely used resampling technique in statistics for assessing

the uncertainty about parameter estimates. Denote by � the number of days. Our bootstrap

repeats the following two steps a large number, � , of times.

1) Obtain a bootstrap sample of size � days with replacement and then apply the smoothing

procedure of Section IV.A to the bootstrap sample to obtain the estimate of the daily

pattern  ��#��� .
2) Obtain another bootstrap sample of size � days with replacement and then find the max-

imum likelihood estimate of � J 4 M �� 4 M �� 4"�'4 � � based on the bootstrap sample and the esti-

mate of  ��#��� obtained in Step 1.
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V. THE RESULTS

This section illustrates results of fitting the NTT model to CERNET packet count data over at

various levels of aggregation.

A. Model estimates and uncertainty

Figure 4 displays seven weekdays of 300-second aggregate counts along with a smooth thick

curve that represents the estimate �J � ��� � , expressed in packets per second. The smooth curve

is obtained by applying a local quadratic filter to the data as described in Section IV. The three

peaks in mean rate at 11 a.m., 4 p.m. and 8:30 p.m. are approximately eight times as large as the

minimum rate at 6 a.m. At 8 a.m. the load is increasing at a rate of over 90% per hour. Clearly,

this strong daily pattern must be accounted for when modeling the packet count series. Even

ten-minute segments of fine time-scale data can cover more than a 15% change in the mean

packet rate. Ignoring this trend would alter any assessment of stochastic dependence in the data.
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nd

 )

6 am 12 noon 6 pm 6 am

20
40

60
80

10
0

Fig. 4. Estimate of �
�������

(thick curve) along with seven days of 300-second counts scaled as the square root of packets per

second. The daily pattern is strong; for example, there is an eight-fold increase in load between 6 a.m. and 11 a.m.

Given the estimated mean rate, � ���� � , maximum likelihood estimates and bootstrap 90% con-

fidence limits of the remaining parameters are as follows:
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parameter J M � � (hr.) �
MLE 0.0067 8.6 2.3 0.952

lower conf. limit 0.0051 8.0 1.7 0.916

upper conf. limit 3.4 9.3 2.4 0.972

Both the maximum likelihood estimate (MLE) and all bootstrap estimates for M � were below

0.001 indicating that the additional noise term � ����� is not necessary. (500 bootstrap replications

were used.) The point of steepest relative decrease in � ������ occurs about 5:30 p.m. and determines

an upper bound on the MLE of � through (7). It happens that �� is equal to its upper bound for

this data. Nevertheless, the upper confidence limit exceeds �� because each on replication of

bootstrap method  ����� is re-estimated from a different sample of data so the upper bound on� varies across bootstrap samples. Thus, the bootstrap recognizes uncertainty in � by properly

accounting for uncertainty in  ���� � . The small estimate of J implies that a large number of

latent packet trains (eg. mean rate/ J ) are modeled as contributing to the total flow. Since ����� �
is proportional to J , relatively little variation in the aggregate counts is modeled as arising from

the train arrival and departure process.

B. Inference on fine-scale characteristics

Figures 5 and 6 compare actual packet count series to simulated series at aggregation levels

of 300 seconds (Figure 5) and 10 seconds (Figure 6). These displays help assess how well the

nonstationary traffic model describes typical fluctuations at different levels of aggregation. In

Figure 5 the upper block of panels plots 300-second packet counts for six days of the CERNET

data. The lower block of panels plots eight days of simulated data. Each simulated day comes

from a random bootstrap fit so as to incorporate model uncertainty into the simulations. The

smooth gray curve in each panel is the estimated daily pattern. The simulated counts have

the same broad features as the actual counts: a prominent daily pattern, wandering departures

from the mean, and variability that increases with level. There are, perhaps, somewhat more

abrupt features in some of the actual series than are seen in the simulated ones, but the model is

describing 300-second packet counts that, to a large extent, behave like the observed ones.

Figure 6 is laid out in the same manner as Figure 5 but displays actual and simulated 10-

second packet counts. Once again the 10-second counts are simulated from bootstrap fits of
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Fig. 5. Actual and simulated 300-second packet counts. Six days of actual counts are shown in the top block. Eight days of

simulated counts are shown in the bottom block. The simulations are based on random bootstrap fits to 300-second data. The

NTT model clearly captures the daily pattern and various excursions from it.

the 300-second data—so the figure demonstrates that a nonstationary model fit to data at coarse

time-scale (300 seconds) can predict features of data on a much finer time-scale (10 seconds). In

fact, the 10 second data has the same general trend and roughly the same variance and tendency

to wander as the actual 10 second data. These features are well-modeled even though no fine-

scale counts were involved in the fitting process.

Figure 7 gives another demonstration of the NTT model’s ability to extrapolate to fine time

scales by plotting two versions of 0.9, 0.99, and 0.999 quantiles for 10-second packet counts—

one estimated from the NTT model and the other calculated from the actual 10-second data.

August 16, 2002 DRAFT



SUBMITTED TO IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 18

9.2 9.4 9.6 9.8 10.0

4000

5000

6000

7000

4000

5000

6000

7000

4000

5000

6000

7000

9.2 9.4 9.6 9.8 10.0

hour of day

S
im

ul
at

ed
 (

pa
ck

et
s 

pe
r 

se
co

nd
)

A
ct

ua
l (

pa
ck

et
s 

pe
r 

se
co

nd
)

Fig. 6. Actual and simulated 10-second packet counts for a 45 minute period between 9 a.m. and 10 a.m. arranged as in

Figure 5. The 10-second simulations are based on random bootstrap fits to 300-second data. The NTT model captures the

upward trend, local variability, and wandering nature of the actual 10-second data.

The NTT-based estimates are 95% upper confidence bounds of the quantiles derived from the

bootstrap fits to 300-second data. The actual quantiles are computed as follows: (1) subtract the

estimated mean � �� � ��� from the 10-second data across all days; (2) calculate quantiles from the

residuals in one-hour time blocks; (3) add the estimated mean back into the residual quantiles.

The plots show that the NTT estimates are in good agreement with the actual quantiles and they

could well be used to provide slightly conservative load estimates by time of day for various

traffic engineering problems. The actual .99 and .999 quantiles have aberrant values at 8 and

9 p.m. During this time period on one day, the link experienced unusually heavy loads for about
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2 hours and this is readily apparent in plots of the 10-second data for that day. If these data are

removed from the quantile calculations the agreement is very good.
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Fig. 7. Comparison of 10 second packet count quantiles. The actual quantiles are based on a 1 hour window of differences

between 10 second packed counts and the estimated daily pattern. The NTT-based curves are 95% confidence bands of the

quantiles derived from the bootstrap results of the model fit to 300-second packet counts.

Additional checks on the appropriateness of the nonstationary model are obtained by fitting it

to disjoint blocks of data at successively finer time-scales starting with 300 s. Figure 8 displays

the results of these model fits for the three parameters � , � , and M � . The first column of panels

plots the parameter estimates for fit to three blocks of 100-second packet counts. The second

column shows estimates from 30 blocks of 10-second counts. Thin horizontal lines indicate the

parameter estimates from 300 second counts over all hours of the day. Fitting the model to counts

at progressively finer time scales demonstrates to what extent the parameters are independent of

the time of day and the time-scale of the data. Each model fit used 288 packet counts values on

each of seven days. Estimates of M � and J are not shown because they are so small.

The only clear indication of a non-constant parameter is seen in the upper right panel in which
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Fig. 8. Parameter estimates based on packet counts from different blocks time and at different aggregation time scales (100

seconds and 10 seconds). The thin gray lines represent parameter estimates from 300 second data across the whole day. The

block-wise estimates, for the most part, do not change consistently with either time of day or aggregation scale with the exception

that for 10 second data � appears to have lower values in the daytime than at night.

the estimate of � tends to be high in the nighttime hours with lower values during the day. Plots

of data for each individual day (not shown here) reveal that the average rate during the hours

after midnight tends to increase within each week, beginning with a low on Sunday night. This

day of week pattern could easily be incorporated into the mean curve  � � ��� and doing so would

likely reduce both the magnitude and variation in fitted values of � . However, good day of week

modeling is not possible using only the seven days of data available in this analysis.

VI. DISCUSSION

We have proposed a Non-stationary Traffic Train model for analyzing sequences of packet

counts on network links. The NTT model takes into account various sources of variation that

have different interpretations and effects. First, a daily pattern is explicitly specified and es-

timated from observed data crossing multiple days. This makes it possible to distinguish low
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frequency components of observed data from a deterministic daily pattern. Second, latent traf-

fic train segments are introduced to provide a simple and realistic way of modeling the non-

stationarity through the arrivals and departures of the trains. Third, each traffic train is treated

as an fGn process to accommodate bursty traffic. We use fGn’s because previous authors have

shown them to describing fine time-scale characteristics of aggregate network traffic and they

have an appealing derivation under a byte-train formulation with ON/OFF periods following

long-tail distributions [14]. Finally, an additional uncorrelated noise term is included but found

to be negligible compared with the other two random components listed above. The resulting

NTT model and likelihood-based estimation promise sound and coherent statistical inference

for fine time-scale behavior using coarse-scale traffic counts.

We demonstrated that the model performs well on a collection of CERNET packet count data.

Actual 10-second packet count sequences are well represented by 10-second sequences simu-

lated from NTT models that have been fit to 300-second data. Similarly, NTT-based quantiles

of 10-second data for different times of the day closely track the sample quantiles of actual 10-

second counts. The NTT model supports inference at any time-scale so the relevant scale can

be used for traffic engineering even when data are only available at coarse scales such as with

five-minute packet counts.

Blockwise fitting of the model to 10 second data indicates that the Hurst parameter � changes

with time of day. We speculate that this may be caused by a trend, that we did not model, in

which the traffic during night hours increases as the week progresses from Monday through

Friday. In short, all weekdays are not the same and the mean curve  ���� � should model these day

of week effects in cases where enough data is available to establish the pattern. We have also

considered modeling random daily effects in cases where little data is available or there is not

obvious structure in the day-to-day changes.

The NTT Hurst parameter around .95 is larger than values typically reported in the literature,

for example, [2], in the range of .75 to .85. Ignoring day of week effects probably explains some

of this difference. Another contributing factor is that the NTT model dampens correlations in

counts separated by a time that is large relative to � . Thus, with stationary sequences, the NTT

model will tend to match long-term correlations in the data by estimating a higher � relative to

that needed for an fGn process. It would make an interesting study to compare fine time-scale
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inference when using both fGn and NTT models in cases where the actual data is from one of the

two models. Fine time-scale inference with a fGn model would be degraded by a deterministic

trend in the coarse-scale aggregate counts and also by coarse-scale correlations that are not as

strong as those at fine time-scales.

VII. APPENDIX

A. Proof of Proposition 1

Let 
 I � I � / I denote the number of trains that are active from time � to time �1$ + � , and let
 I�� I � / I denote the number of trains that start in the time interval ���34V�5$ + �V� and last at least until

time � $ + � . First, we show that the distribution of the number of the trains 
 I � / I at time � $ + �
given 
 I , the number of the trains at time � , can be written as
 I � / I 	 
 I +, 
 I � I � / I $2
 I�� I � / I
for ����� and + � � � . Let � , � ��� �5� � - � � . Then
 I � I � / I � Binomial � 
 I 4 � / I �
because the exponential distribution of train lifetimes implies that each of the 
 I trains has a

probability � / I of surviving at least an additional time + � � � . To obtain the distribution of
 I�� I � / I , we partition the interval ���34V�2$ + ��� into � equal-length intervals and count the number

of trains starting in each of the � intervals. Let � � 
 �I denote the sum of these counts and let+ 1 , + � ��� . Then � � 
 �I follows the Poisson distribution

Poisson

� 
 - �� � �  � �#� $ � + 1 � + 1 � / I -
�
/ 	�� 4

where we used the fact that if � � Poisson � �H� and 7 	 � � Binomial � � 4 �2� then 7 �
Poisson � � �H� B Letting � 	 
 shows that 
 I�� I � / I is

Poisson � � / I .,/ I � �#� $21 � � �	� ��� - � 1 � � 1�

and the results follow obviously.
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B. Autocovariance matrices of NTT model

First note that for � , > they are proportional—that is, M - �� � � � �
�
� � 4V��� ,TJ - � � � � �

�
� � 4���� —and

for this reason we derive only
� � � �
�
� � 4V��� for general � . Define � such that � , � - ����� and define

� � � � � . Suppose the rate  
�
� I � 	 � is quadratic for � � 1 �T> ; namely,  

�
� I � 	 � , � �� �  �� � I �� 1 � .

The scaled variance is
� � � �
�
�#�34����M �� A.� � A � ��>U�

, � � / . �
 
� -����
	 � / - �� . � -��

 
�� � �  � � I

��
�
� � � � � 	 B (13)

The parenthesized integral is cubic in 	 . Denote the coefficients by � � I �� :

�� � �  � � I
��
	
�
, �� � �  � � I �� �

�
� �

� $�>







� -��
� �  B (14)

Substituting (14) into the scaled variance (13) gives

� � � �
�
�#�34V���M �� A � � A.� ��>U�

, � � / �� � �  � � I ��� � / - � � � � � /S- � � � �Q�04 � �
where

��� � � 4���� denotes the generalized incomplete gamma function

��� � � 4 ��� , . �
� �

� - � � - I � �
for which � �� � � - � � -�� I � � , � -

� ��� ��� � 4�� ���3B The final expression for
� � � �
�
���34V��� , the variance of �

�
I ,

is thus

M �� A � � A.� ��>U� � � / �� � �  � � I ��� � - � � � / - � � � ���<4 � �3B (15)

The autocovariance of �

�
I is derived similarly. For � � � $�>

A � � � �
�
� � 4V���M �� A.� �QA.� ��>U��� � /

,
�� � �  � ��� I� . I -
�I -
�!- � � -���� 	 � / - � �

� � 	
$

�� � �  � ��� I� . I -
� � �
I -
� � -�����	 � / - � � � � 	 (16)
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where the parenthesized integrals have been expressed as cubic functions in 	 with coefficients

� ��� I
�

and � ��� I� ; namely,

�� � �  � ��� I� 	
�
, �� � �  � � � �� 1 � � �� $�>







�
	 � I -
�!-�� (17)

�� � �  � ��� I� 	
�
, �� � �  � � � �� 1 � � �� $�>







� � I -
�!-��
	 �  B (18)

Substituting (17) and (18) into (16) gives the final expression for the autocovariance of �

�
I (for� � �%� � � > ) as

� � � �
�
� � 4V��� , M �� A.�6� A.� ��>�� � � /

A�� � �  � � ��� I�� � - � � � /S- � � � � � � � ��>��)4 � � �
$

� ��� I�
�
�
- � � � / - � � � � � � 4 � � � $ >U����� (19)
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